博碩士論文 101226049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.140.185.147
姓名 張喬(Chiao Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 低溫成長鍺薄膜於單晶矽基板上之研究
(Investigation of Low-Temperature Growth of Germanium Thin Films on Single Crystal Silicon)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 矽鍺薄膜及其應用於光偵測器之研製
★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器★ 整合慣性感測元件之導波矽基光學平台研究
★ 矽基光偵測器研製與整合於光學波導系統★ 光學滑鼠用之光學元件設計
★ 高效率口袋型LED 投影機之研究★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究
★ 極化繞射光學元件在高密度光學讀取頭上之應用研究★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究
★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較
★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質★ 熔融法折射式微透鏡陣列之設計製造與檢測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文是以電子迴旋共振化學氣相沉積法(Electron Cyclotron Resonance Chemical Vapor Deposition, ECR-CVD)於矽基板Si(100)上沉積高結晶率之鍺薄膜並探討薄膜特性。由於鍺材料相較於矽材料具有較高的載子遷移率和較小的能隙,因此常被利用在作用於紅外光波段的光通訊元件。又因鍺的晶格常數和高效率III-V族太陽能電池主要材料 – 砷化鎵較為匹配,因此鍺晶片常被使用為III-V族太陽能電池的基板。然而,鍺晶片的成本大約是矽晶片的四倍,為降低成本,於矽晶片上成長磊晶的鍺薄膜以取代原鍺晶片的基板之技術越來越受矚目。但因矽鍺異質磊晶會有晶格不匹配和熱膨脹係數差易所造成的缺陷,傳統製程多為600℃以上的高溫。而本論文是利用ECR-CVD,在180℃的低溫下,於矽晶片上成長高結晶鍺薄膜,並成功成長40 nm的磊晶鍺薄膜。
本文探討工作壓力、ECR共振區位置、微波功率、氫氣稀釋比、後退火溫度、後退火時間及厚度等參數對薄膜結構的影響,並利用電漿放射光譜儀以探測製程時的電漿光譜,利用橢圓儀、拉曼光譜儀、X光繞射儀及原子力顯微鏡等方法量測薄膜的厚度、結晶率、晶相及表面形貌等結構特性。實驗結果發現在微波功率700 W、主磁場電流55 A、工作壓力30 mTorr及氫稀釋比100的製程參數下,可以成功成長厚度40 nm的高結晶鍺薄膜,其Ge (400) 晶相X光繞射搖擺曲線之半高寬為4119 arcsec;當厚度增加至90 nm的薄膜,則為多晶結構,但仍擁有平整的表面(表面粗糙度為1.44 nm)。
摘要(英) In this research, we use the electron cyclotron resonance chemical vapor deposition (ECR-CVD) to deposit high-crystallinity germanium thin films on single crystal silicon substrate, and investigate the structural properties of the films. Because of the higher carrier mobility and the lower energy bandgap compared with Si, Ge is widely used for near infrared optical communication devices. Moreover, for the lattice constant of Ge matches that of GaAs, a common material for high efficiency III-V solar cell, crystal Ge is also used as the substrate of this kind of solar cell. However, the cost of crystal Ge is about 4 times higher than that of crystal Si, so in order to lower the cost, many researches have been doing efforts to grow high quality epitaxial Ge films on Si substrates to replace the crystal Ge substrates. Traditional methods to grow Ge on Si heteroepitaxy are usually at high substrate temperature (> 600℃), here, we present a new way to grow the Ge epilayers under low substrate temperature (180℃).
In this work, we use optical emission spectroscopy (OES) to monitor the plasma distribution when processing. The structural properties are measured and analyzed by spectroscopy ellipsometry (SE), Raman Spectrometer, and X-ray diffractometer (XRD), and atomic force microscopy (AFM). Without annealing, we can obtain a high-crystallinity structure in a 40-nm film with the full width at half maximum of Ge (400) XRD rocking curve of 4119 arcsec, and an 1.44-nm root mean square surface roughness in a 90-nm film.
關鍵字(中) ★ 鍺
★ 低溫
★ 矽基板
★ 電子迴旋共振化學氣相沉積
★ 電子溫度
★ 矽光子學
關鍵字(英) ★ Germanium thin film
★ low temperature
★ Si substrate
★ ECR-CVD
★ electron temperatre
★ silicon photonics
論文目次 中文摘要 i
英文摘要 ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論……………………………………………………………………………..1
1-1 前言………………………………………………………………………………..1
1-2 研究動機…………………………………………………………………………..2
1-3 研究目的與本文架構……………………………………………………………..3
第二章 文獻整理及基本回顧…………………………………………………………..4
2-1磊晶鍺薄膜成長於矽基板上之製程方法…………………………………..………..6
2-2 磊晶鍺薄膜成長於矽基板上之成長機制………………………………………..…12
2-2.1 矽薄膜電漿沉積機制………………………………………………………...12
2-2.2 磊晶成長機制………………………………………………………………...13
2-3磊晶鍺薄膜成長於矽基板上之元件應用………………………………………...…15
2-3.1 太陽能電池……………………………………………………………………15
2-3.2 紅外光檢測器………………………………………………………………….16
第三章 實驗方法與設備………………………………………………………………..18
3-1 製程設備介紹………………………………………………………………………...18
3-1.1 ECR-CVD設備介紹………………………………………………………….18
3-1.2 快速退火爐 (Arts-RTA)……………………………………………………...24
3-2 量測儀器與原理……………………………………………………………………..25
3-2.1 光放射光譜儀(Optical Emission Spectroscopy, OES)……………………….25
3-2.2 橢圓偏振儀(Spectroscopy Ellipsometry, SE)………………………………...26
3-2.3 拉曼光譜儀(Raman Spectrometer)…………………………………………...28
3-2.4 X光繞射儀(X-Ray Diffractometer, XRD)……………………………………30
3-2.5 原子力顯微鏡(Atomic Force Microscopy, AFM)……………………………32
第四章 薄膜製備實驗及結果討論…………………………………………………….34
4-1 調變工作壓力…………………………………………………………………..35
4-2 調變主磁場電流………………………………………………………………..41
4-3 調變微波功率…………………………………………………………………..46
4-4 調變氫氣稀釋比…………………………………………………………...…..51
第五章 結論與未來發展……………………………………………………………..58
5-1 結論…………………………………………………………………………...58
5-2未來展望………………………………………………………………………58
參考文獻………………………………………………………………………………..60
參考文獻 1. V. Sorianello, L. Colace, G. Assanto, A. Notargiacomo, N. Armani, F. Rossi, and C. Ferrari, "Thermal evaporation of Ge on Si for near infrared detectors: Material and device characterization," Microelectron Eng 88, 526-529 (2011).
2. V. Sorianello, A. De Iacovo, L. Colace, A. Fabbri, L. Tortora, E. Buffagni, and G. Assanto, "High responsivity near-infrared photodetectors in evaporated Ge-on-Si," Appl Phys Lett 101 (2012).
3. M. Labrune, X. Bril, G. Patriarche, L. Largeau, O. Mauguin, and P. Roca I Cabarrocas, "Epitaxial growth of silicon and germanium on (100)-oriented crystalline substrates by RF PECVD at 175°C," EPJ Photovoltaics 3 (2012).
4. S. Jongthammanurak, J. F. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimerling, and J. Michel, "Large electro-optic effect in tensile strained Ge-on-Si films," Appl Phys Lett 89 (2006).
5. D. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kartner, "High performance, waveguide integrated Ge photodetectors," Opt Express 15, 3916-3921 (2007).
6. Y. Takada, J. Osaka, Y. Ishikawa, and K. Wada, "Effect of Mesa Shape on Threading Dislocation Density in Ge Epitaxial Layers on Si after Post-Growth Annealing," Jpn J Appl Phys 49 (2010).
7. Y. Ishikawa, and K. Wada, "Near-Infrared Ge Photodiodes for Si Photonics: Operation Frequency and an Approach for the Future," Ieee Photonics J 2, 306-320 (2010).
8. M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, "Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing," Appl Phys Lett 72, 1718-1720 (1998).
9. C. L. Andre, J. A. Carlin, J. J. Boeckl, D. M. Wilt, M. A. Smith, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, and S. A. Ringel, "Investigations of high-performance GaAs solar cells grown on Ge-Si1-xGex-Si substrates," Ieee T Electron Dev 52, 1055-1060 (2005).
10. M. Yamaguchi, T. Takamoto, and K. Araki, "Super high-efficiency multi-junction and concentrator solar cells," Sol Energ Mat Sol C 90, 3068-3077 (2006).
11. G. Sun, F. Chang, and R. A. Soref, "High efficiency thin-film crystalline Si/Ge tandem solar cell," Opt Express 18, 3746-3753 (2010).
12. Y. Ohmachi, T. Nishioka, and Y. Shinoda, "The heteroepitaxy of Ge on Si(100) by vacuum evaporation," J Appl Phys 54, 5466-5469 (1983).
13. S. S. Iyer, J. C. Tsang, M. W. Copel, P. R. Pukite, and R. M. Tromp, "Growth temperature dependence of interfacial abruptness in Si/Ge heteroepitaxy studied by Raman spectroscopy and medium energy ion scattering," Appl Phys Lett 54, 219-221 (1989).
14. L. M. Giovane, H. C. Luan, A. M. Agarwal, and L. C. Kimerling, "Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers," Appl Phys Lett 78, 541-543 (2001).
15. Y. Ishikawa, and K. Wada, "Germanium for silicon photonics," Thin Solid Films 518, S83-S87 (2010).
16. G. Barbarino, R. de Asmundis, G. de Rosa, C. M. Mollo, S. Russo, and D. Vivolo, "Silicon photo multipliers detectors operating in Geiger regime: an unlimited device for future applications," Photodiodes – World Activities in 2011, InTech (2011).
17. J. M. Román, "State-of-the-art of III-V Solar Cell Fabrication Technologies, Device Designs and Applications," Advanced Photovoltaic Cell Design (2004).
18. J. Michel, J. F. Liu, and L. C. Kimerling, "High-performance Ge-on-Si photodetectors," Nat Photonics 4, 527-534 (2010).
19. S. Luryi, A. Kastalsky, and J. C. Bean, "New infrared detector on a silicon chip," Ieee Trans on electr devices 31, 1135-1139 (1984).
20. M. A. Wistey, Y. Y. Fang, J. Tolle, A. V. G. Chizmeshya, and J. Kouvetakis, "Chemical routes to Ge/Si(100) structures for low temperature Si-based semiconductor applications," Appl Phys Lett 90 (2007).
21. C. Z. Chen, Y. Y. Zheng, S. H. Huang, C. Li, H. K. Lai, and S. Y. Chen, "Epitaxial growth of thick Ge layers with low dislocation density on silicon substrate by UHV/CVD," Acta Phys Sin-Ch Ed 61 (2012).
22. S. G. Thomas, S. Bharatan, R. E. Jones, R. Thoma, T. Zirkle, N. V. Edwards, R. Liu, X. D. Wang, Q. H. Xie, C. Rosenblad, J. Ramm, G. Isella, and H. Von Kanel, "Structural characterization of thick, high-quality epitaxial Ge on Si substrates grown by low-energy plasma-enhanced chemical vapor deposition," J Electron Mater 32, 976-980 (2003).
23. E. A. Fitzgerald, "Dislocations in Strained-Layer Epitaxy - Theory, Experiment, and Applications," Mater Sci Rep 7, 91-142 (1991).
24. H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, "High-quality Ge epilayers on Si with low threading-dislocation densities," Appl Phys Lett 75, 2909-2911 (1999).
25. V. A. Shah, A. Dobbie, M. Myronov, and D. R. Leadley, "Effect of layer thickness on structural quality of Ge epilayers grown directly on Si(001)," Thin Solid Films 519, 7911-7917 (2011).
26. D. P. Malta, J. B. Posthill, R. J. Markunas, and T. P. Humphreys, "Low-defect-density germanium on silicon obtained by a novel growth phenomenon," Appl Phys Lett 60, 844-846 (1991).
27. A. Matsuda, "Microcrystalline silicon. Growth and device application," J Non-Cryst Solids 338, 1-12 (2004).
28. J. A. Venables, "Introduction to surface and thin film processes," Campridge Univ Press (2000).
29. J. Villain, "Physics of Crystal Growth," Campridge Univ Press (1998).
30. J. B. Hudson, "Surface Science: An Introduction," John Wiley & Sons, Inc (1998).
31. M. A. Green, "Third generation photovoltaics: solar cells for 2020 and beyond," Physica E 14, 65-70 (2002).
32. P. Klement, C. Feser, B. Hanke, K. von Maydell, and C. Agert, "Correlation between optical emission spectroscopy of hydrogen/germane plasma and the Raman crystallinity factor of germanium layers," Appl Phys Lett 102 (2013).
33. A. Matsuda, M. Takai, T. Nishimoto, and M. Kondo, "Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate," Sol Energ Mat Sol C 78, 3-26 (2003).
34. M. Labrune, "Silicon surface passivation and epitaxial growth on c-Si by low temperature plasma processes for high efficiency solar cells," ParisTech Doctoral thesis in Materials Science (2011).
35. B. von Blanckenhagen, D. Tonova, and J. Ullmann, "Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials," Appl Optics 41, 3137-3141 (2002).
36. D. A. G. Bruggeman, "Berechnung verschiedener physikalischer konstanten von heterogenen substanzen," Ann Phys 24, (1935).
37. A. Yariv, and P. Yeh, "Optical waves in crystals," John Wiley & Sons, Inc (2003).
38. G. V. Vajenine, "Use of plasma-activated gases in synthesis of solid-state nitrides," Dalton T 39, 6013-6017 (2010).
39. J. C. Tsang, P. M. Mooney, F. Dacol, and J. O. Chu, "Measurements of Alloy Composition and Strain in Thin Gexsi1-X Layers," J Appl Phys 75, 8098-8108 (1994).
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2013-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明