博碩士論文 101226053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:34.204.175.38
姓名 徐瑞偉(Jui-wei Hsu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井
(Bottom-up nanoheteroepitaxy of semipolar InGaN quantum on Si substrates)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 矽基板上的氮化鎵異質磊晶術★ 矽基板上的氮化物太陽能電池
★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層
★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝
★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體★ 強度敏感式影像橢圓儀及應用
★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率
★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討
★ 氮化物表面電漿生醫感測之理論分析★ 以氮化物表面電漿結構研製的生醫感測微晶片
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇研究提出利用氧化鋅奈米柱結構列陣來克服矽基板與氮化鎵材料的熱膨脹問題與晶格匹配問題,我們藉由成功生長直徑150nm、長400nm具方向性、均勻性一致的氧化鋅奈米異質結構列陣,以致做到氮化鎵生長在矽基板技術,由於氧化鋅與氮化鎵的晶格與熱膨脹係數相當且為奈米柱列陣結構,能有效減少氮化鎵磊晶層應力累積與線差排的發生,且氧化鋅具有可化學蝕刻的特性,對於氮化鎵磊晶層的後續加工處理有很大的幫助,除此之外為了達到增加電子、電動復合的效果,我們利用金屬有機化學氣相沉積法在氮化鎵磊晶層表面成長出半極性奈米角錐結構的氮化銦鎵/氮化鎵多重量子井,藉此可降低量子史塔克效應對發光效率的影響。同時,我們也發現氧化鋅中的鋅原子擴散至氮化鎵內,會讓氮化鎵轉變成P型半導體,可進一步製成P-side down 結構LED提升半極性量子井的IQE,由我們的模擬結果可知藉由P-side down 結構可降低Spillover current ratio到0.1以下,且可大幅提升IQE到0.7 ,增加發光效率。
摘要(英) this paper proposes the use of ZnO nanorods structure to overcome the mismatch of thermal expansion and the atomic lattice between Si and GaN. We have successfully grown diameter 150nm,and 400nm length of zinc oxide nano-rods array that can achieve GaN on Si , ZnO not only exhibits the lattice constant and thermal expansion coefficient similar to GaN, the oxide alloy can also be easily etched in chemical solutions, which greatly saves the subsequent processing cost. In order to increase internal quantum efficiency (IQE) of the emitter grown on Si, we grew semi-polar nano-pyramidal InGaN/GaN multiple quantum wells with uniquely developed conditions. Further, it is found that the GaN grown on ZnO/Si exhibits p-type behaviors, which is due to the diffusion of Zn into GaN. If confirmed, IQE of the semi-polar quantum wells can be further enhanced through a p-side-down structure, our simulation results show P-side down structure reduces Spillover current ratio of 0.1 or less, and can increase IQE to 0.7 to enhance light efficiency.
關鍵字(中) ★ 奈米異質磊晶術
★ 半極性
★ 氮化銦鎵
★ 氮化鎵
關鍵字(英) ★ nanoheteroepitaxy
★ GaN
論文目次 論 文 摘 要 I

ABSTRACT II

誌謝 III

目錄 IV

圖目錄 V

表目錄 VII

英文名詞縮寫對照表 VIII

第一章、 簡介 - 1 -

1.1 發光二極體工作原理 - 1 -

1.2研究動機 - 4 -

1.2.1 材料與基板 - 4 -

1.2.2 氮化鎵成長於矽基板 - 5 -

1.2.3 氧化鋅奈米緩衝層 - 8 -

1.3章節簡介 - 13 -



第二章、儀器介紹與試片製程分析 - 14 -

2.1儀器介紹 - 14 -

2.1.1濺鍍(SPUTTERING) - 14 -

2.1.2掃描式電子顯微鏡(SEM) - 14 -

2.1.3有機金屬化學氣相沉積(MOCVD) - 15 -

2.1.4拉曼光譜儀 - 16 -

2.2試片製程 - 17 -

2.2.1氧化鋅奈米柱製程介紹. - 19 -

2.2.2水熱法成長氧化鋅奈米柱原理 - 20 -

2.2.3濺鍍條件對氧化鋅奈米柱之分析 - 22 -

2.3.有機金屬化學氣相沉積(MOCVD)成長氮化鎵於氧化鋅奈柱....... ...- 32 –

2.3.1掃描電子顯微鏡(SEM)與X光繞射(XRD)分析 ............... - 35 –

2.3.2高解析度穿透式電子顯微鏡(HRTEM)分析 .................. - 38 –

2.3.3拉曼光譜分析 .........................................- 41 –

2.3.4. MOCVD成長多層量子井結構及LED元件.... ...............- 42 –


第三章、結構分析與討論 - 44 -

3.1氮化鎵光激發螢光光譜(PL)量測分析 - 44 -

3.2鋅元素擴散於氮化鎵分析 - 47 -

3.2.1能量散佈分析儀(EDS)與二次離子質譜儀(SIMS)量測分析 - 47 -

3.3 P-SIDE DOWN 與 P-SIDE UP 結構分析 - 51 -

3.4半極性氮化鎵/氮化銦鎵多層量子井特性 - 57 -

3.4.1六方晶系之纖維礦(WURTZITE) 結構極性分析 - 57 -

3.4.2 極性與半極性氮化鎵/氮化銦鎵能帶圖分析 - 57 -

3.5結構與優缺點分析 - 59 -

第四章、結論與未來發展 - 65 -

4.1 結論 - 65 -

4.2 未來發展 - 65 -

參考文獻 - 67 -
參考文獻 [1] H. J. Round, “A note on carborundum,” Electrical world.,vol 49, pp.309-310, (1907).

[2] N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission form
Ga(As1-xPx) junctions ,” Appl. Phys. Lett., vol 1, pp.82-83 ,(1962).

[3] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InAlGaP/GaAs
visible light-emitting diodes,” Appl. Phys. Lett.,vol 58,pp. 1010-1012 ,(1991).

[4] Y. Koide, N. Itoh, K. Itoh, N. Sawaki, and I. Akasaki, “Effect of AlN buffer layer on
AlGaN/a-Al2O3 heterepitaxial growth by metal organic vapor phase epitaxy,” Jpn. J.
Appl. Phys. ,vol 27, pp.1156-1161, (1988).

[5] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on
p-type Mg-doped GaN films,” Jpn. J. Appl. Phys. ,vol 31, pp.139-142, (1992).

[6] E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press,
Cambridge),(2006).

[7] http://www.ledinside.com.tw

[8] http://www.materialsnet.com.tw

[9]http://www.display-all.com

[10] A. Krost, and A. Dadgar, “GaN‐Based Devices on Si”, phys. Stat. sol. (a).,vol 194, pp.361 ,(2002)

[11] ]T. Egawa, B. Zhang, H. Ishikawa, “High performance of InGaN LEDs on (111)
silicon substrates grown by MOCVD”, IEEE Electron Device Lett.,Vol 26, pp.196-171,(2005)

[12] A. Dadgar, C. Hums, A. Diez, J. Blasing, A. Krost, “Growth of blue GaN LED structures on 150-mm Si(1 1 1)”, J. Crystal Growth, Vol 297, pp.279-282, (2006)

[13] http://www.azzurro-semiconductors.com

[14] A. Dadgar, C. Humsa,A. Dieza, F. Schulzea, J. Bläsinga, and A. Krost, “Epitaxy of GaN on large substrate: Si or sapphire?”, Proc. of SPIE, vol 6355,pp.63550,(2005)

[15] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett.,vol 48,pp. 353, (1986)

[16] N. Dharmarasu, K. Radhakrishnan, M.Agrawal,” Demonstration of AlGaN/GaN High-Electron-Mobility Transistors on 100-mm-Diameter Si(111) by Ammonia Molecular Beam Epitaxy”, Appl. Phys. Express.,vol 5,pp.091003, (2012)

[17] Shigefusa F. Chichibu, Akira Uedono, Takeyoshi Onuma, Benjamin A. Haskell et al, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors”, nature materials, vol 5, (2006).

[18] T. A. Rawdanowicz and J. Narayan, “Epitaxial GaN on Si(111): Process control of SiNx interlayer formation” Appl. Phys. Lett.,vol 85,pp.133, (2004).

[19]G. T. Chen et al., Appl. Phys. Lett.,vol 91,pp.261910, (2007)

[20] Ayers, John E,” Heteroepitaxy of semiconductors”, p164

[21] S. Luryi, and E. Suhir, Appl. Phys. Lett.,vol 49,pp.140, (1986)

[22] H. Ghayour, H. R. Rezaie, S. Mirdamadi, A. A. Nourbakhsh, “The effect of seed
layer thickness on alignment and morphology of ZnO nanorods”, Vaccum, vol 86,
pp.101‐105,(2011)

[23] Francisco Solís-Pomar, Eduardo Martínez, Manuel F Meléndrez and Eduardo Pérez-Tijerina,” Growth of vertically aligned ZnO nanorods using textured ZnO films”, Solís-Pomar et al. Nanoscale Research Letters.,vol 6,pp.524 ,(2011)

[24]田民波(著),薄膜技術與薄膜材料,顏怡雯(校訂),五南圖書出版社

[25] S. Bensmaine, L. Le Brizoual, O. Elmazria, B. Assouar,B. Benyoucef,” The effects of the deposition parameters of ZnO thins films on their structural properties”, Journal of Electron Devices, vol. 5, pp. 104-109,( 2007)

[26]Michael Quirk,Julian Serda,”半導體製造技術”,羅文雄,蔡榮輝,鄭岫盈(譯),滄海書局,台灣培生教育出版有限公司

[27] Shih-Wei Chen, Jenn-Ming Wu,” Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method”, Acta Materialia.,vol 59,pp. 841–847, (2011)

[28] N. Li, E. H. Park, Y. Huang, S. Wang, A. Valencia, B. Nemeth, J. Nause, and I. Ferguson,”Growth of GaN on ZnO for Solid State Lighting Applications”, Proc. of SPIE, vol 6337,pp.63370Z‐1, (2006).

[29] MIYAKE H, MOTOGAITO A, HIRAMATSU K, “Effects of Reactor Pressure on Epit axial Lateral Overgrowth of GaN via Low-Pressure Metalorganic Vapor Phase Epitaxy”, Jpn. J. Appl. Phys., vol 38, pp.1000-1002, (1999).

[30] K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake,Y. Iyechika, T. Maeda, “Recent Progress in Selective Area Growth and Epitaxial Lateral Overgrowth of III-Nitrides:Effects of Reactor Pressure in MOVPE Growth” Phys. Stat. Sol., vol 176, pp.535, (1999).

[31]http://www.i-micronews.com

[32] 敦 俊 儒,「離子佈植摻雜氮化鎵薄膜的光、電、結構特性之分析」
,國立中央大學,碩士論文,民國九十年。

[33] Shoubin Xue ,Xing Zhang ,Ru Huang , Huizhao Zhuang “Effects of the sputtering time of ZnO buffer layer on the quality of GaN thin films” Applied Surface Science.,vol 254, pp.6766–6769 ,(2008)


[34] Venkataramanan Mahalingam, Enrico Bovero, Prabhakaran Munusamy, Frank C. J. M. van Veggel,Rui Wangb and Andrew J. Stecklb” Optical and structural characterization of blue-emitting Mg2+- and Zn2+-doped GaN nanoparticles”
J. Mater. Chem., vol 19, pp.3889–3894,( 2009)


[35] http://en.wikipedia.org

[36]http://wiley-vch.e-bookshelf.de/products/reading-epub/product-id/806032/title/Cluster%2BSecondary%2BIon%2BMass%2BSpectrometry.html?lang=en

[37] Ray-Ming Lin, Sheng-Fu Yub, Miin-Jang Chenc and Wen-Ching Hsud, ” original GaN-based LED structure on ZnO template by MOCVD” Proc. of SPIE. vol 7602 (2010)

[38] M. L. Reed, E. D. Readinger, Shen,Wraback, Syrkin, Usikov, V. Kovalenkov,2 and V. A. Dmitriev, ” n-InGaN/p-GaN single heterostructure light emitting diode with p-side down”, APPLIED PHYSICS LETTERS.,vol 93,pp. 133505, (2008)

[39] Zhiqiang Li, Michel Lestrade, Yegao Xiao, and Zhanming Simon Li,” Improvement of Performance in p-Side Down InGaN/GaN Light-Emitting Diodes with Graded Electron Blocking Layer” ,Jpn. J. Appl. Phys. ,vol 50,pp.080212,(2011)

[40] Ulrich T. Schwarz, and Michael Kneissl, “Nitride emitters go nonpolar” phys. stat. sol. (RRL), vol 1, pp.3, (2007)

[41] Tanya Paskova, Drew A. Hanser and Keith R. Evans,” GaN Substrates for III-Nitride Devices”, Proceedings of the IEEE |,vol. 98,No. 7, (2010)

[42] http://www.fuw.edu.pl/~aneta/interest.html

[43] http://www.compoundsemiconductor.net/csc/news-details.php?id=19733284

[44] D Zhu, D J Wallis and C J Humphreys, “Prospects of III-nitride optoelectronics
grown on Si’’, Rep. Prog. Phys. ,vol 76 ,pp.106501, (2013)

[45] Taek Kim,Samsung Advanced Institute of Technology (SAIT),Yongin, “A nanopyramid structure for monolithic white-light LEDs

[46] Kui Wu, Tongbo Wei, Haiyang Zheng, Ding Lan, Xuecheng Wei, Qiang Hu, Hongxi Lu, Junxi Wang, Yi Luo, and Jinmin Li, “Fabrication and optical characteristics of phosphor-free InGaN nanopyramid white light emitting diodes by nanospherical-lens photolithography”. J. Appl. Phys. ,vol 115, pp.123101,(2014).

[47] KnowMade & Yole Développement, Nicolas Baron, Hong Lin, “GaN-on-Silicon Substrate Patent Investigation report from KnowMade & Yole Développement”, Yole Développement & KnowMade – April (2014).

[48] S. D. Hersee, X. Y. Sun, X. Wang, M. N. Fairchild, J. Liang, and J. Xu, “Nanoheteroepitaxial growth of GaN on Si nanopillar arrays”, J. Appl. Phys.,vol 97, pp.124308 ,(2005)

[49] D Zhu, D J Wallis and C J Humphreys, “Prospects of III-nitride optoelectronics
grown on Si”, Rep. Prog. Phys. ,vol 76 ,pp.106501, (2013)

[50]http://www.patentlyapple.com/patently-apple/2014/03/new-super-bright-nano-dot-coatings-for-sapphire-substrates-came-to-light-in-japan-this-week.html

[51] A. Usikov, O. Kovalenkov, V. Ivantsov1, V. Sukhoveev, V. Dmitriev1, N. Shmidt, D.Poloskin2, V. Petrov, V. Ratnikov, “P-type GaN epitaxial layers andAlGaN/GaN heterostructures with high hole concentration and mobility grown by HVPE” Mater. Res. Soc. Symp. Proc. Vol. 831,(2005).

[52] F. M. Steranka, J. Bhat, D. Collins, L. Cook, M. G. Craford, R. Fletcher, N.Gardner, P. Grillot, W. Goetz, M. Keuper, R. Khare, A. Kim, M. Krames, G.Harbers, M. Ludowise, P. S. Martin, M. Misra, G. Mueller, R. Mueller-Mach,S. Rudaz, Y.-C. Shen, D. Steigerwald, S. Stockman, S. Subramanya, T.Trottier, and J. J. Wierer, “High power LEDs – Technology status and market applications,” Physica Status Solidi A-Applied Research, Vol. 194,pp. 380, (2002).
指導教授 賴昆佑(Kun-yu Lai) 審核日期 2014-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明