博碩士論文 101226054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.208.126.232
姓名 林廷瑋(Ting-Wei Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用光導管增加數位全像空間帶寬乘積之研究
(Study of Extension of Space-Bandwidth Product with a Light Pipe for Digital Holography)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ CCD 量測儀器之研究與探討★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用
★ 多光束繞射光學元件應用在DVD光學讀取頭之設計★ 高位移敏感度之全像多工光學儲存之研究
★ 利用亂相編碼與體積全像之全光學式光纖感測系統★ 體積光柵應用於微物3D掃描之研究
★ 具有偏極及光強分佈之孔徑的繞射極限的研究★ 三維亂相編碼之體積全像及其應用
★ 透鏡像差的量測與MTF的驗證★ 二位元隨機編碼之全像光學鎖之研究
★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究
★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測★ 發光二極體導光機構之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文提出利用光導管增加空間帶寬乘積,意旨在相同解析度(Resolution)下增加視野(Field of View,簡稱FOV)範圍、或者在相同視野下增加解析度,其應用範圍廣泛,例如在數位全像顯微鏡架構中,取代物鏡之功能達到微小化目的;另一方面,用於數位全像儲存系統中,可以等效放大其電子感光元件之畫素總數,對於資料讀取速率上有更多幫助。
本實驗室提出在物與影像偵測元件之間加入矩形光導管,藉由矩形光導管之反射面來蒐集大角度之高頻訊號光,並使用影像矩陣鏡射之技術來克服空間帶寬限制,大幅增進重建影像之品質。我們建立了在不同物光或參考光時重建影像之運算原理與方式,最後以實驗驗證此方式提升還原影像解析度與視野之結果。
摘要(英) In this thesis, we propose a new method that using light pipe to extend space-bandwidth product by increasing field of view and the resolution at the same field of view simultaneously. One of the applications is to use light pipe to replace the objective lens for miniaturize the microscope with digital holography. On the other hand, this method can be used to extend effective CCD pixel number so that it is helpful to storage capacity and access rate.
We propose to use light pipe between object and image detector. It can enhance resolution of reconstructed image by using reflective surface to collect signal light in high frequency. We also use mirror image to overcome space-bandwidth limit, and establish a computing method to reconstruct image in different object lights or reference light. Finally, the corresponding experiments are done, and image resolution and field of view are improved, respectively.
關鍵字(中) ★ 空間帶寬乘積
★ 數位全像
★ 光導管
關鍵字(英) ★ Space-Bandwidth Product
★ Digital Holography
★ Light Pipe
論文目次 摘要 IV
Abstract V
誌謝 VI
目錄 VII
圖索引 X
表索引 XIII
第一章 緒論 1
1.1 數位全像顯微術與數位全像儲存系統之發展 1
1.2 研究動機與挑戰 3
1.3 論文大綱 4
第二章 原理介紹 5
2.1 全像術理論與發展 5
2.2 數位全像術 7
2.2.1 數位全像術的架構與紀錄 7
2.2.2 數位全像術的影像重建 9
2.3 取樣定理、空間帶寬乘積與繞射 13
第三章 使用光導管提升解析度之原理、模擬與實驗 17
3.1 全像術中加入光導管提升系統解析度之原理 17
3.2 使用光導管之數位全像重建提高影像解析度方法 19
3.3 模擬分析 25
3.3.1 模擬參數設定 25
3.3.2 直接傅氏轉換法與角譜重建法之雜訊比較 27
3.3.3 改良直接傅氏轉換法解決雜訊問題 29
3.3.4 重建方式之分析與比較 32
3.3.5 模擬結果與討論 33
3.4 實驗驗證與討論 35
3.4.1 實驗架構 35
3.4.2 實驗結果與討論 38

第四章 使用光導管增加視野之原理、模擬與實驗 43
4.1 全像術中加入光導管增加視野之原理 43
4.2 使用光導管之數位全像重建增加影像視野方法 45
4.3 模擬分析 46
4.3.1 模擬參數設定 46
4.3.2 模擬結果與討論 47
4.4 實驗驗證及討論 48
4.4.1 實驗架構 48
4.4.2 實驗結果與討論 50
第五章 結論 52
參考文獻 54
中英名詞對照表 58

參考文獻 [1] T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221-1223 (1998).
[2] I. Yamaguchi, J.-i. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Optics 40, 6177-6186 (2001).
[3] D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
[4] J. W. Goodman and R. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
[5] J. Cowley and D. Walker, “Reconstruction from in-line holograms by digital processing,” Ultramicroscopy 6, 71-75 (1981).
[6] V. Kebbel, H.-J. Hartmann, and W. P. Jüptner, “Application of digital holographic microscopy for inspection of micro-optical components,” Proc. SPIE 4398, 189-198.
[7] B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Optics 47, A52-A61 (2008).
[8] A. E. Tippie, A. Kumar, and J. R. Fienup, “High-resolution synthetic-aperture digital holography with digital phase and pupil correction,” Opt. Express 19, 12027-12038 (2011).
[9] P. S. Hilaire, S. A. Benton, and M. Lucente, “Synthetic aperture holography: a novel approach to three-dimensional displays,” JOSA A 9, 1969-1977 (1992).
[10] M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J Microsc. 198, 82-87 (2000).
[11] M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102, 13081-13086 (2005).
[12] L. Xu, X. Peng, J. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Optics 40, 5046-5051 (2001).
[13] V. R. Singh, L. Sui, and A. Asundi, “Compact handheld digital holographic microscopy system development,” Proc. SPIE 7522, 75224L (2009).
[14] O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417-1428 (2010).
[15] D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787-1792 (2010).
[16] 黃奕豪,微型化數位全像顯微鏡,國立中央大學光電科學與工程學系碩士論文,中華民國一百零一年六月.
[17] H. Coufal and G. W. Burr, “Optical data storage,” Chapter 26, International Trends in Applied Optics, ed, A. Guenther, SPIE (2002).
[18] H. J. Coufal, G. T. Sincerbox, and D. Psaltis, Holographic data storage (Springer-Verlag New York, Inc., 2000).
[19] L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” P IEEE 92, 1231-1280 (2004).
[20] P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Optics 2, 393-400 (1963).
[21] B. Booth, “Photopolymer material for holography,” Appl. Optics 14, 593-601 (1975).
[22] A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Optics 35, 2389-2398 (1996).
[23] K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993-994 (1994).
[24] A. Banjanovic, “Special Report: Towards universal global mobile phone coverage,” Euromonitor International, 247-257 (2009).
[25] M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express 2, 2721-2730 (2011).
[26] J. Goodman, Introduction to Fourier optics, (2008).
[27] I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
[28] G. Koren, F. Polack, and D. Joyeux, “Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints,” JOSA A 10, 423-433 (1993).
[29] U. Schnars and W. Jueptner, Digital holography (Springer, 2005).
[30] E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Optics 39, 4070-4075 (2000).
[31] T. M. Kreis, “Frequency analysis of digital holography,” Optical Engineering 41, 771-778 (2002).
[32] M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1(1), 018005-018050 (2010).
[33] E. Abbe, Die Lehre von der Bildentstehung im Mikroskop: mit 57 Abbildungen und einem Bildnis Ernst Abbe′s (F. Vieweg, 1910).
[34] A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space-bandwidth product of optical signals and systems,” JOSA A 13, 470-473 (1996).
[35] H. M. Ozaktas and H. Urey, “Space-bandwidth product of conventional Fourier transforming systems,” Opt. Commun. 104, 29-31 (1993).
[36] 余業緯,使用光導管改良之數位成像技術與干涉術,中華民國發明專利審查中.
[37] H. Schreiber and J. H. Bruning, “Phase shifting interferometry,” Optical Shop Testing, 3rd ed., 547-666 (2006).
[38] F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” JOSA A 5, 1058-1065 (1988).
[39] 孫慶成,光電工程概論,全華圖書股份有限公司,2012年9月.
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明