博碩士論文 101226055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.207.240.230
姓名 何誌堅(Jhih-jian He)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 硫化鎘薄膜對軟性太陽電池特性之研究
(Study of CdS films on flexible solar cells)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗探討不同鎘鹽類材料所鍍製之硫化鎘(CdS)緩衝層薄膜特性,及後續鎘離子擴散處理參數對軟性CIGS太陽電池元件效率影響之研究,並以軟體模擬探討鎘離子擴散量與深度對CIGS太陽電池元件特性與實驗比較。在使用化學水浴沉積法(Chemical bath deposion, CBD)鍍製n-CdS緩衝層時,溶液中的鎘(Cd)離子會擴散進入CIGS薄膜表面,形成n-CIGS:Cd,產生電性反轉,此型態的n-CdS/n-CIGS:Cd/p-CIGS(CIGSS)介面可調控CIGS太陽電池元件之空乏區寬度、內建電場、載子濃度等特性,有助於優化CIGS元件的開路電壓及短路電流,提升元件效率。因此本實驗首先將CIGS樣品浸泡於硫酸鎘溶液,藉由調整溶液中的氨水濃度、浸泡溫度、時間等參數,分析Cd離子在CIGS薄膜表面的擴散量及深度(Cd ion soaking treatment);接著使用CBD法製作CdS薄膜,選用不同鎘鹽類材料、硫脲及氨水進行調配,藉由溶液pH值調整、鍍膜時間及溫度,控制CdS結晶顆粒大小,並製作出均勻性佳且透光性良好的CdS薄膜,其厚度約60nm,鍍製於已擴散Cd/S離子的CIGS樣品上,最後製作成CIGS太陽電池元件,得到最佳效率6.36%,VOC為0.503 V,JSC為32 mA/cm2,FF為39.1%。
摘要(英) In this study, it was discussed the effect of CdS films for different Cd source and Cd ion soaking treatment on the CIGS flexible solar cells. In addition, it was analyzed by the effect of Cd diffusion depth on the CIGS solar cells by simulation, comparing with experimental. During n-CdS films deposited by chemical bath deposition (CBD), Cd ion diffused into CIGS surface formed n-CIGS:Cd, resulting n-CdS/n-CIGS:Cd/p-CIGS(CIGSS) structure. This structure was a buried homo- junction, and it could widen the space charge region in CIGS solar cell, resulting in open circuit voltage (VOC) and short circuit current density (JSC) increased. Therefore, in the experimental, the CIGS films would soak into Cd ion solution with various NH3 concentrations, soaking temperature and soaking time. Then, CdS films deposited by different Cd source, and the thickness of CdS films were 60 nm. Finally, CIGS flexible solar cells were fabricated. The CIGS flexible solar cells performance was that the efficiency was 6.36%, VOC was 0.50 V, JSC was 32 mA/cm2, FF was 39.1%, improved by Cd ion soaking treatment on CIGS flexible solar cells.
關鍵字(中) ★ 硫化鎘
★ CIGS軟性太陽電池
★ 鎘離子擴散
★ 擴散深度
★ 模擬
關鍵字(英) ★ CdS
★ CIGS flexible solar cell
★ Cd ion-soaking
★ diffusion depth
★ Simulation
論文目次 第一章 緒論 1
1-1背景 1
1-2文獻回顧 4
1-2-1太陽能電池 4
1-2-2銅銦鎵硒(CIGS)薄膜太陽能電池 6
1-2-2-1 CIGS薄膜太陽能電池之發展 6
1-2-2-2軟性基板之介紹與應用 7
1-2-2-3鉬(Mo)背電極與阻擋層 10
1-2-2-4 CIGS吸收層 10
1-2-2-5 硫化鎘(CdS)緩衝層 15
1-2-2-6氧化鋅(ZnO)透明導電膜 19
1-3研究動機 21
1-3-1不鏽鋼基板與阻擋層SiOX 21
1-3-2硫化鎘薄膜與鎘離子擴散 21
第二章 基礎理論 24
2-1太陽能電池基礎理論 24
2-2薄膜沉積原理 27
2-2-1蒸鍍沉積原理 27
2-2-2濺鍍沉積原理 27
2-2-3化學水浴沉積法原理 28
2-3 CIGS太陽電池效率提升之方法 31
2-3-1鎵摻雜:調變CIGS能隙 31
2-3-2硫摻雜:調變CIGS能隙 32
2-3-3鎘摻雜:填補表面空缺與拓寬空乏區 32
2-3-4硒化鉬(MoSe2):產生背電場效應 32
2-3-5鈉摻雜:增進CIGS膜質 33
第三章 n-CIGS:Cd電性反轉層模擬分析 34
3-1 wxAMPS太陽能電池模擬軟體介紹 34
3-2 CIGS太陽電池之模擬參數設定 35
3-2-1 CIGS太陽電池模型建立 35
3-2-2單層反轉層(n-CIGS:Cd) 37
3-2-2-1反轉層載子濃度(Nd)對CIGS太陽電池特性之模擬設定 37
3-2-2-2反轉層厚度對CIGS太陽電池特性之模擬設定 37
3-2-3多層反轉層 37
3-2-3-1漸變三層反轉層之厚度對CIGS太陽電池特性之模擬設定 37
3-2-3-2漸變八層反轉層之厚度對CIGS太陽電池特性之模擬設定 38
3-3 CIGS太陽電池模擬結果與分析 40
3-3-1單層反轉層(n-CIGS:Cd) 40
3-3-1-1反轉層載子濃度(Nd)對CIGS太陽電池特性之研究 40
3-3-1-2反轉層厚度對CIGS太陽電池特性之研究 42
3-3-2 多層反轉層(n-CIGS:Cd) 45
3-3-2-1漸變三層反轉層之厚度對CIGS太陽電池特性之研究 45
3-3-2-2漸變八層反轉層之厚度對CIGS太陽電池特性之研究 47
第四章 實驗步驟與方法 50
4-1基板清洗 50
4-2實驗方法與裝置 51
4-2-1不鏽鋼基板 51
4-2-2阻擋層SiOX 51
4-2-3 CdS緩衝層 52
4-2-3-1 化學水域法鍍製CdS薄膜 52
4-2-3-2 鎘離子擴散實驗 54
4-2-4軟性CIGS太陽電池元件 56
4-3實驗量測 57
4-3-1光電子能譜儀 57
4-3-2二次離子質譜儀 58
4-3-3場發射掃描式電子顯微鏡 59
4-3-4電流-電壓特性量測 60
4-3-5光譜儀 61
4-3-6原子力顯微鏡 62
4-3-7量子效率 62
4-3-8 X-ray繞射儀 63
第五章 實驗結果與討論 65
5-1不鏽鋼基板粗糙度分析 65
5-2阻擋層SiOX粗糙度與鐵離子擴散分析 66
5-3不同鎘鹽類之CdS膜對CIGS太陽電池元件特性分析 69
5-4鎘離子擴散處理對CIGS薄膜及元件特性分析 74
5-4-1 1-stage鎘離子擴散對CIGS薄膜及元件特性分析 74
5-4-2 2-stage鎘離子擴散對CIGS薄膜及元件特性分析 77
5-4-3 鎘離子擴散對CIGS元件特性模擬與實驗之比較分析 83
第六章 結論 85
6-1結論 85
6-2未來工作 87
參考文獻 88
參考文獻 [1] Sémhur, “Trends in Atmospheric Carbon Dioxide”, Earth System Research Laboratory, (2008)
[2] K. S. Deffeyes, Hubbert′s Peak: The Impending World Oil Shortage, American, Princeton Univ. Press
[3] 國立臺灣大學科學教育發展中心,「到底還有多少石油(Petroleum)?」,知識通訊評論,52,26,(2007)
[4] US Energy Information Administration, “Nuclear Energy Review”, (2012)
[5] World Nuclear Association website, “Nuclear in France”, (2014)
[6] 藍戈丰,「北德陰雨天,德國可再生能源仍創單日佔 74% 高峰」,科技新報,(2014)
[7] T.Gerke, “Sunday, Solar Sunday — Germany’s July 7 Solar Power Record In-Depth”, cleantechnica, (2013)
[8] C. Morris, M. Pehnt, “Key findings”, Engery Transition The German Energiewende, (2014)
[9] G. Parkinson, “Rooftop Solar Will Soon Be Cheaper Than Coal in the EU”, RenewEconomy, (2014)
[10] E. Becquerel, “Mémoire sur les effets électriques produits sous l′influence des rayons solaires”, Comptes Rendus, 9, 561, (1839)
[11] D. M. Chapin, C. S. Fuller, G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys., 25, 676, (1954)
[12] D. C. Reynolds, G. Leies, L.L. Antes, R.E. Marburger, Phys. Rev. 96, 1208, (1956)
[13] M. A Green, A. W. Blakers, S. Narayanan, M. Taouk, “Improvements in silicon solar cell efficiency”, Solar cell, 17, 75, (1986)
[14] A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, M. A. Green, “22.8% efficient silicon solar cell”, Appl. Phys.Lett., 55, 1363, (1989)
[15] J. Zhao, A. Wang, M. A. Green, “24•5% Efficiency silicon PERT cells on MCZ substrates and 24•7% efficiency PERL cells on FZ substrates”, Prog. Photovolt: Res. Appl., 16, 235, (2008)
[16] D. L. Staebler, C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Appl. Phys. Lett., 31, 292, (1977)
[17] 美國國家再生能源實驗室(National Renewable Energy Laboratory, NREL)
[18] S. Wagner, J. L. Shay, P. Migliorato, H. M. Kasper, “CuInSe2/CdS heterojunction photovoltaic detectors”, Appl. Phys. Lett., 25, 434, (1974)
[19] R. A. Mickelsen, W. S. Chen, Y. R. Hsiao, V. E. Lowe, “Polycrystalline thin-film CuInSe2/CdZnS solar cells”, IEEE Trans. Electro. Dev., 31, 542, (1984)
[20] W. E. Devaney, W. S. Chen, J. M. Stewart, R. A. Mickelsen, “Structure and properties of high efficiency ZnO/CdZnS/CuInGaSe2 solar cells”, IEEE Trans. Electro. Dev., 37, 428, (1990)
[21] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells”, Prog. Photovolt: Res., Appl., 11, 225, (2003)
[22] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor”, Prog. Photovolt: Res. Appl., 16, 235, (2008)
[23] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%”, Prog. Photovolt: Res. Appl., 19, 894, (2011)
[24] A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, A. N. Tiwari, ” Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films”, Nature Mater., 10, 857, (2011)
[25] P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, “Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%”, Phys. Stat. Sol.(RRL) – Rap. Res. Lett., 8, 219, (2014)
[26] F. Kessler, D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules”, Solar Energy, 77, 685, (2004)
[27] W. K. Batchelora, I. L. Repinsa, J. Schaefera, M. E. Beckb, “Impact of substrate roughness on CuInxGa1-xSe2 device properties”, Sol. Energy Mater. Sol. Cells, 83, 67, (2004)
[28] K. Yoshino, T. Hata, T. Kakeno, H. Komaki, M. Yoneta, Y. Akaki, T. Ikari, “Electrical and optical characterization of n-type ZnO thin films”, Phys. Stat. Sol. (c), 0, 626, (2003).
[29] ASM metal reference book.
[30] Y. M. Chang, L. Y. Wang, W. F. Su, “Polymer solar cells with poly(3,4-ethylenedioxythiophene) as transparent anode”, Organic Electronics, 9, 968, (2008)
[31] Y. M. Chang, W. F. Su, L. Y. Wang, “Photoactive Polythiophene: Titania Hybrids with Excellent Miscibility for Use in Polymer Photovoltaic Cells”, Macromolecular Rapid Communications, 29, 1303, (2008)
[32] Y. M. Chang, W. F. Su, L. Y. Wang, “Influence of photo-induced degradation on the optoelectronic properties of regioregular poly(3-hexylthiophene)”, Sol. Energy Mater. Sol. Cells, 92, 761, (2008)
[33] L. Assmann, J. C. Bernède, A. Drici, C. Amory, E. Halgand, M. Morsli, “Study of Mo thin films and Mo/CIGS interface properties”, Applied Surface Science, 246, 159, (2005)
[34] J. H. Scofield, A. Duda, D. Albin, B. L. Ballard, P. K. Predecki, “Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells”, Thin Solid Films, 260, 26, (1995)
[35] N. G. Dhere, A. A. Kadam, S. S. Kulkarni, S. M. Bet, A. H. Jahagirdar, “Large area CIGS thin film solar cells on foils: nucleus of a pilot plant”, Solar Energy, 77, 697, (2004)
[36] S. Wagner, “Symposium on Materials and New Processing Technologies for Photovoltaics”, Proc. Symp. Matr. New Process. Tech. Photovolt. Electrochem. Soc., 83, 410, (1983).
[37] A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering, John Wiley & Sons, Singapore, 2003.
[38] D. Cahen, “Some thoughts about defect chemistry in ternaries”, Proc. 7th Int. Conf. on Ternary and Multinary Compounds, Mater. Res. Soc., Pittsburgh, 433, (1987)
[39] R. Noufi, R. Axton, C. Herrington, S. K. Deb, “Electronic properties versus composition of thin films of CuInSe2”, Appl. Phy. Lett., 45, 668, (1984)
[40] J. R. Sites, X. Liu, ”Recent efficiency gains for CdTe and CuIn1−xGaxSe2 solar cells: What has changed?”, Sol. Energy Mater. Sol. Cells, 41, 374, (1996)
[41] D. L. Young, J. Keane, A. Duda, J. A. M. AbuShama, C. L. Perkins, M. Romero, R. Noufi, Prog. Photovolt: Res. Appl., 11, 538, 2003.
[42] S. H. Wei, S. B. Zhang, A. Zunger, “Effect of Ga addition to CuInSe2 on its electronic, structure and defect properties”, Appl. Phys. Lett., 72, 3199, (1998)
[43] O. Volobujevaa, M. Altosaara, J. Raudojaa, E. Mellikova, M. Grossberga, L. Kaupmeesa, P. Barvinschi, "SEM analysis and selenization of Cu-In alloy films produced by co-sputtering of metals", Sol. Energy Mater. Sol. Cells, 93, 11, (2009)
[44] S. S. Kulkarni , G. T. Koishiyev , H. Moutinho, N. G. Dhere, “Preparation and characterization of CuIn1−xGaxSe2−ySy thin film solar cells by rapid thermal processing”, Thin Solid Films, 517, 2121, (2009)
[45] 時瑞甫,「以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析」,國立中央大學機械工程學系碩士論文,(2013)
[46] 中田時夫, CIGS太陽能電池の最新技術, (2010)
[47] D. Hariskos, S. Spiering, M. Powalla, “Buffer layers in Cu(In,Ga)Se2 solar cells and modules”, Thin Solid Films, 480, (2005)
[48] D.Schmid, M.Ruckh, H.-W.Schock, “A comprehensive characterization of the interfaces in Mo/CIS/CdS/ZnO solar cell structures”, Sol. Energy Mater. Sol.Cells, 41, 281, (1996)
[49] 蔡智斌,簡志宇,魏士淵,賴志煌,「CIGS太陽能電池¬─非鎘緩衝層材料及製程技術發展」,科儀新知,32,5,(2011)
[50] G.B. Turner, R.J. Schwartz, J. L. Gray, “Band discontinuity and bulk vs. interface recombination in CdS/CuInSe2 solar cells”, Proc. 20th IEEE Photovolt. Specialists Conf., 1457 (1988)
[51] 中田, “Cdフリー高効率CIGS薄膜太陽電池”, 応用物理, 74,333, (2005)
[52] K.A. Jones, “The lattice mismatch between (112) chalcopyrite films and (0001) CdS substrates”, J. Cryst. Growth, 47, 235, (1975)
[53] S. S. Li, B. J. Stanbery, C. H. Huang, C. H. Chang, Y. S. Chang, T. J. Anderson, “Effects of buffer layer processing on CIGS excess carrier lifetime: application of dual-beam optical modulation to process analysis [of solar cells]”, Proc. 20th IEEE Photovolt. Specialists Conf., 821, (1996)
[54] J. Kessler, M. Ruckh, D. Hariskos, U. Ruhle, R. Menner. and H.W. Schock , “Interface engineering between CuInSe2 and ZnO”, Proc. 23th IEEE Photovolt. Specialists Conf., 447, (1993)
[55] R. Hunger, T. Schulmeyer, M. Lebedev, A. Klein, W. Jaegermann, R. Kniese, M. Powalla, K. Sakurai, S. Niki, “REMOVAL OF THE SURFACE INVERSION OF CuInSe2 ABSORBERS BY NH3,aq. ETCHING”, 3rd World Conf. Photovolt. Energy Con., 566, (2003)
[56] D. Abou-Ras, G. Kostorza, A. Romeo, D. Rudmannb, A.N. Tiwari, “Structural and chemical investigations of CBD- and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells”, Thin Solid Films, 480, 118, (2005)
[57] H.W. Schock, R. Noufi, “CIGS-based solar cells for the next millennium”, Prog. Photovolt. Res. Appl., 8, 151, (2000)
[58] 中田時夫,“CIGS太陽電池の基礎技術”,日刊工業新聞社, (2010)
[59] P. W. Yu, S. P. Faile, Y. S. Park, “Cadmium−diffused CuInSe2 junction diode and photovoltaic detection”, Appl. Phys. Lett., 26, 384 (1975)
[60] K. Ramanathan, F.S. Hasoon, S. Smith, D.L. Young, M.A. Contreras, P.K. Johnson, A.O. Pudov, J.R. Sites, “Surface treatment of CuInGaSe2 thin films and its effect on the photovoltaic properties of solar cells”, J. Phys. Chem. Sol., 64, 1495, (2003)
[61] R. Hunger, T. Schulmeyer, A. Klein, W. Jaegermann, M.V. Lebedev, K. Sakurai, S. Niki, “SXPS investigation of the Cd partial electrolyte treatment of CuInSe2 absorbers”, Thin Solid Films, 480, 218, (2005)
[62] Adam Fraser Halverson, “The Role of Sulfur Alloying in Defects and Transitions in Copper Indium Gallium Diselenide Disulfide Thin Films”, (2007)
[63] S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, S. Nakamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima, S. Nik, “Fabrication of wide-gap Cu(In1-xGax)Se2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness”, Sol. Energy Mater. Sol. Cells, 87, 541, (2005)
[64] U. Rau, M. Schmid, "Electronic properties of ZnO/CdS/CuInGaSe2 solar cells-aspects of heterojunction formation", Thin Solid Films, 387, 141, (2001)
[65] R. G. Gordon, “Criteria for Choosing Transparent Conductors”, MRS Bulletin, 25, 52, (2000)
[66] T. Minami, “New n-type Transparent Conducting Oxides”, MRS Bulletin, 25, 38, (2000)
[67] R. E. I. Schropp, A. Madan, “Properties of conductive zinc oxide films for transparent electrode applications prepared by rf magnetron sputtering”, J. Appl. Phys., 66, 2027, (1989)
[68] S. Ueno, D. Matsuura, M. Komada, Y. Kurima, S. Furue, H. Komaki, S. Ishizuka, H. Shibata, K. Matsubara, S. Niki, “Grid-electrode-type CIGS submodules on glass and metal substrates”, 21st Int. Photovolt. Sci. Eng. Conf., (2011)
[69] K. Herz, A. Eicke, F. Kessler, R. Wächter, M. Powalla, “Diffusion barriers for CIGS solar cells on metallic substrates”, Thin Solid Films, 431, 392, (2003)
[70] R. Wuerz, A. Eicke, M. Frankenfeld, F. Kessler, M. Powalla, P. Rogin, O. Yazdani-Assl, “CIGS thin-film solar cells on steel substrates”, Thin Solid Films, 517, 2415, (2009)
[71] D. Schmid, M. Ruckh, F. Grunwald, and H. W. Schock, “Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2”, J. Appl. Phys., 73, 2902 (1993)
[72] V. Nadenau, D. Braunger, D. Hariskos, M. Kaiser, C. Koble, A. Oberacker, M. Ruckh, U. Ruhle, R. Schaffler, D. Schmid, T. Walter, S. Zweigart, H. W. Schock, “Solar cells based on CuInSe2 and related compounds: material and device properties and processing”, Prog. Photovolt.:Res. Appl., 3, 363 (1995)
[73] 蔡進譯,「超高效率太陽電池-從愛因斯坦的光電效應談起」,物理雙月刊,27,701,(2005)
[74] M. Powalla, G. Voorwinden, D. Hariskos, P. Jackson, R. Kniese, “Highly efficient CIS solar cells and modules made by the co-evaporation process”, Thin Solid Films, 517, 2111, (2009)
[75] T. Nakada, M. Mizutani, “18% Efficiency Cd-Free Cu(In, Ga)Se2 Thin-Film Solar Cells Fabricated Using Chemical Bath Deposition (CBD)-ZnS Buffer Layers”, Jpn. J. Appl. Phys., 41, L165, (2002)
[76] 林純平,「共蒸鍍硒化銅銦薄膜鍍膜條件與組成成分之關聯性」,國立東華大學電機工程學系碩士論文,(2009)
[77] J. M. Dona, J. Herrero, “Chemical Bath Deposition of CdS Thin Films: An Approach to the Chemical Mechanism Through Study of the Film Microstructure”, J. Electrochem. Soc., 144, 4081, (1997)
[78] Y. J. Chang, C. L. Munsee, G. S. Herman, J. F. Wager, P. Mugdur, D. H. Lee, C. H. Chang, “Growth, characterization and application of CdS thin films deposited by chemical bath deposition”, Surf. Interface Anal., 37, 398, (2005)
[79] T. Nakada, D. Iga, H. Ohbo, A. Kunioka, “Effects of Sodium on Cu(In, Ga)Se2-Based Thin Films and Solar Cells”, Jpn. J. Appl. Phys. 36, 732, (1997)
[80] S. H. Wei, S. B. Zhang, A. Zunger, “Effects of Na on the electrical and structural properties of CuInSe2”, J. Appl. Phys., 85, 7214, (1999).
[81] M. Bodegard, K. Granath, L. Stolt, A. Rockett, “The behaviour of Na implanted into Mo thin films during annealing”, Sol. Energy Mater. Sol. Cells, 58, 199, (1999)
[82] Y. Liu, Y. Sun, A. Rockett, “A new simulation software of solar cells—wxAMPS”, Sol. Energy Mater. Sol. Cells, 98, 124, (2012)
[83] AMPS Manual
[84] Y. Liu, Y. Sun, and A. Rockett, “Batch simulation of solar cells by using Matlab and wxAMPS”, 38th IEEE Photovolt. Specialists Conf., (2012)
[85] S. Kijima, T. Nakada, “High-Temperature Degradation Mechanism of Cu(In,Ga)Se2-Based Thin Film Solar Cells”, Appl. Phys. Expr. 1, 075002, (2008)
[86] 林育俊,「界面特性對硒化銅銦鎵太陽能電池效能之影響」,國立東華大學電機工程學系碩士論文,(2010)
[87] A. M. Acevedo, N. H. Como, G. C. Cruz, “Modeling solar cells: A method for improving their efficiency”, Mater. Sci. Eng B, 177, 1430, (2012)
[88] Y. Hirai, H. Nagashima, Y. Kurokawa, A. Yamada, “Experimental and Theoretical Evaluation of Cu(In,Ga)Se2 Concentrator Solar Cells”, Jpn. J. Appl. Phys., 51, 014101, (2012)
[89] J. Pettersson , C. Platzer-Björkman, U. Zimmermann, M. Edoff, “Baseline model of graded-absorber Cu(In,Ga)Se2 solar cells applied to cells with Zn1−xMgxO buffer layers”, Thin Solid Films, 519, 7476, (2011)
[90] A. Parisi, L. Curcio, V. Rocca, S. Stivala, A. C. Cino, A. C. Busacca, G. Cipriani, D. L. Cascia, V. D. Dio, R. Miceli, and G. R. Galluzzo, “Thin Film CIGS Solar Cells, Photovoltaic Modules, and the Problems of Modeling”, Int. J. Photoenergy, 2013, 817484, (2013)
[91] J. R. Ray, C. J. Panchal, M. S. Desai, U. B. Trivedi, “SIMULATION OF CIGS THIN FILM SOLAR CELLS USING AMPS-1D”, J. Nano- Electron. Phys., 3, 747, (2011)
[92] 蘇炎坤,「二次離子質譜儀之分析及應用」,科儀新知,9,9,(1988)
[93] 汪建民,材料分析,中國材料科學學會,民國八十七年
[94] A. L. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination”, Phys. Rev., 56, 978, 1939
[95] T. Nakada, A. Kunioka, “Direct evidence of Cd diffusion into Cu(In,Ga)Se2 thin films during chemical-bath deposition process of CdS films”, Appl. Phys. Lett. 74, 2444, (1999)
[96] S. W. Gaarenstroom, N. Winograd, “Initial and final state effects in the ESCA spectra of cadmium and silver oxides”, J. Chem. Phys., 67, 3500, (1977)
[97] C. Malitesta, D. Centonze, L. Sabbatini, P. G. Zambonin, L. P. Bicellib, S. Maffi, “Analytical Characterization by X-Ray Photoelectron Spectroscopy of Quaternary Chalcogenides for Cathodes in Lithium Cells”, J. Mater. Chem., 1,259 (1991)
[98] 林峻平,「探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響」,國立中央大學光電科學與工程學系碩士論文,(2012)
[99] Y. Hagiwara, T. Nakada, A. Kunioka, “Improved JSC in CIGS thin film solar cells using a transparent conducting ZnO:B window layer”, Sol. Energy Mater. Sol. Cells, 67, 267, (201)
指導教授 陳昇暉(Sheng-hui Chen) 審核日期 2014-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明