博碩士論文 101226061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.140.186.241
姓名 林祺登(Chi-deng Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 應用線狀結構照明提升雙光子顯微鏡解析度
(Resolution Enhancement in Two-photon Microscopy by Applying Structured Line Illumination)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 以同調結構照明顯微術進行散射樣本解析度之提升
★ 掃描式二倍頻結構照明顯微術★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究
★ 鏡像輔助斷層掃描相位顯微鏡★ 以數位全像術重建多波長環狀光束之研究
★ 相位共軛反射鏡用於散射介質中光學聚焦之研究★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究
★ 倍頻非螢光基態耗損超解析之顯微成像方法★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用
★ 雙光子掃描結構照明顯微術★ 微投影光學切片超光譜顯微術
★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化★ 一次性多角度漫射光譜量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要為改良雙光子螢光顯微鏡(Two-Photon Microscopy, TPM),應用線狀光形的干涉條紋當作結構照明(Structured Illumination)以提升解析度。結構照明顯微鏡(Structured Illumination Microscopy)可將頻譜空間拓展至傳統顯微鏡的兩倍,並使解析度提升至傳統顯微鏡的兩倍。而雙光子螢光與激發光強度成平方關係的特點,使雙光子螢光顯微鏡有良好的光學切片能力,可以改善結構照明顯微鏡縱向解析度的不足,且雙光子螢光之結構照明可提升影像的空間頻率為將近原本的三倍。因此可透過此系統架構,不但使解析度提高亦可以擁有光學切片能力。
本研究可分為實驗與模擬兩部分。在模擬方面,依照實驗架構的規格,模擬雙光子螢光顯微鏡以線狀結構照明激發的影像,並將影像經由演算法重建還原,其解析度約提升2.57倍;而在實驗部分,成功架設出應用線狀結構照明之雙光子螢光顯微鏡,以量子點奈米微粒(Quantum Dot Nanosphere)作為空間解析度量測的樣本,並經由演算法將影像重建還原,可得其橫向空間解析度約提升至1.7倍。
摘要(英) The aim of this study is to enhance the spatial resolution in two-photon microscopy (TPM) by applying a line-shaped structured illumination. Since structured illumination microscopy (SIM) expands the effective frequency spectrum space twice the size bigger of a traditional microscopy’s, its spatial resolution is therefore two times better. Combining it with TPM’s optical sectioning ability, which is due to the relation between the emission and excitation intensity, we can increase the vertical spatial resolution, and also raise the image’s spatial resolution up nearly three times better. Therefore, utilizing our system not only improves the lateral resolution, but also provides optical sectioning ability.
This study is separated into simulation and experimental parts. In the simulation part, by using the parameters shown in the spec of the experiment setup, we simulate the whole process of a TPM image being excited by a structured line illumination, and then use the results to reconstruct the image via algorithm, in which, we were able to come up with a improve factor of 2.57. Later in the experimental part, by using quantum dot nanospheres as our samples for lateral resolution measurement purposes, and exciting two-photon fluorescence while applying structured line illumination, we successfully reconstructed the image via algorithm with a lateral resolution improve factor of 1.7. Finally, we compare the experiment results with the simulation, and discuss its advantages.
關鍵字(中) ★ 雙光子螢光
★ 結構照明顯微鏡
★ 線狀結構照明
關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖索引 vi
第一章 緒論 1
1.1顯微影像簡介 1
1.2超解析顯微鏡 4
1.3結構照明顯微鏡(SIM)發展 6
1.4研究動機與目的 10
1.5論文架構 11
第二章 原理 13
2.1結構照明顯微鏡(SIM)原理 13
2.2雙光子螢光 18
2.3線狀結構照明雙光子顯微鏡(SLITPM)原理 21
第三章 實驗架構建立 28
3.1系統架構 28
3.2實驗架構與結構照明相位之校準 31
3.3實驗樣本備製 34
3.4模擬 36
第四章 實驗結果 44
4.1影像還原流程與實驗結果 44
4.2影像分析與討論 48
第五章 結論 51
第六章 參考資料 53
參考文獻 [1] J. Goodman, ”Introduction to Fourier optics,” The McGraw-Hill Companies, Inc. 2008.
[2] M. W. Davidson and M. Abramowitz, ”Optical microscopy,” Encyclopedia of imaging science and technology, 2002.
[3] G. Brakenhoff, P. Blom, and P. Barends, ”Confocal scanning light microscopy with high aperture immersion lenses,” Journal of Microscopy, vol. 117, pp. 219-232, 1979.
[4] S. W. Hell and J. Wichmann, ”Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Optics letters, vol. 19, pp. 780-782, 1994.
[5] T. A. Klar and S. W. Hell, ”Subdiffraction resolution in far-field fluorescence microscopy,” Optics letters, vol. 24, pp. 954-956, 1999.
[6] R. Henriques and M. M. Mhlanga, ”PALM and STORM: What hides beyond the Rayleigh limit?,” Biotechnology Journal, vol. 4, pp. 846–857, 2009.
[7] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, et al., ”Imaging intracellular fluorescent proteins at nanometer resolution,” Science, vol. 313, pp. 1642-1645, 2006.
[8] M. J. Rust, M. Bates, and X. Zhuang, ”Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods, vol. 3, pp. 793 - 796, 2006.
[9] B. Huang, W. Wang, M. Bates, and X. Zhuang, ”Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science, vol. 319, pp. 810-813, 2008.
[10] M. Neil, R. Juskaitis, and T. Wilson, ”Method of obtaining optical sectioning by using structured light in a conventional microscope,” Optics letters, vol. 22, pp. 1905-1907, 1997.
[11] M. G. Gustafsson, ”Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” Journal of microscopy, vol. 198, pp. 82-87, 2000.
[12] M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, ”Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” pp. 141-150, 2000.
[13] D. Dan, B. Yao, and M. Lei, ”Structured illumination microscopy for super-resolution and optical sectioning,” Chinese Science Bulletin, vol. 59, pp. 1291-1307, 2014.
[14] M. G. Gustafsson, ”Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 13081-13086, 2005.
[15] E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, ”Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proceedings of the National Academy of Sciences, vol. 109, pp. E135-E143, 2012.
[16] M. G. Gustafsson, L. Shao, P. M. Carlton, C. Wang, I. N. Golubovskaya, W. Z. Cande, ”Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophysical journal, vol. 94, pp. 4957-4970, 2008.
[17] P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, ”Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nature methods, vol. 7, pp. 637-642, 2010.
[18] L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, ”I5S: Wide-Field Light Microscopy with 100-nm-Scale Resolution in Three Dimensions,” Biophysical journal, vol. 94, pp. 4971-4983, 2008.
[19] B.-J. Chang, L.-J. Chou, Y.-C. Chang, and S.-Y. Chiang, ”Isotropic image in structured illumination microscopy patterned with a spatial light modulator,” Optics express, vol. 17, pp. 14710-14721, 2009.
[20] P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, ”Super-resolution video microscopy of live cells by structured illumination,” Nature methods, vol. 6, pp. 339-342, 2009.
[21] T. Fukano and A. Miyawaki, ”Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples,” Applied optics, vol. 42, pp. 4119-4124, 2003.
[22] D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, et al., ”DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep., vol. 3, 2013.
[23] D. Keefe, P. Tran, C. Pellegrini, and R. Oldenbourg, ”Polarized light microscopy and digital image processing identify a multilaminar structure of the hamster zona pellucida,” Human Reproduction, vol. 12, pp. 1250-1252, 1997.
[24] M. Levoy, Z. Zhang, and I. McDowall, ”Recording and controlling the 4D light field in a microscope using microlens arrays,” Journal of microscopy, vol. 235, pp. 144-162, 2009.
[25] B. Boruah and M. Neil, ”Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam,” Review of Scientific Instruments, vol. 80, p. 013705, 2009.
[26] J. Lu, W. Min, J.-A. Conchello, X. S. Xie, and J. W. Lichtman, ”Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano letters, vol. 9, pp. 3883-3889, 2009.
[27] O. Mandula, M. Kielhorn, K. Wicker, G. Krampert, I. Kleppe, and R. Heintzmann, ”Line scan-structured illumination microscopy super-resolution imaging in thick fluorescent samples,” Optics express, vol. 20, pp. 24167-24174, 2012.
[28] W. Denk, J. H. Strickler, and W. W. Webb, ”Two-photon laser scanning fluorescence microscopy,” Science, vol. 248, pp. 73-76, 1990.
[29] F. Helmchen and W. Denk, ”Deep tissue two-photon microscopy,” Nature methods, vol. 2, pp. 932-940, 2005.
[30] W. R. Zipfel, R. M. Williams, and W. W. Webb, ”Nonlinear magic: multiphoton microscopy in the biosciences,” Nature biotechnology, vol. 21, pp. 1369-1377, 2003.
[31] F. Chasles, B. Dubertret, and A. C. Boccara, ”Optimization and characterization of a structured illumination microscope,” Optics express, vol. 15, pp. 16130-16140, 2007.
[32] K. Wicker, O. Mandula, G. Best, R. Fiolka, and R. Heintzmann, ”Phase optimisation for structured illumination microscopy,” Optics express, vol. 21, pp. 2032-2049, 2013.
[33] L. Schaefer, D. Schuster, and J. Schaffer, ”Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach,” Journal of microscopy, vol. 216, pp. 165-174, 2004.
[34] E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, et al., ”Structured illumination microscopy using unknown speckle patterns,” Nature Photonics, vol. 6, pp. 312-315, 2012.
[35] A. Dubois, ”Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets,” JOSA A, vol. 18, pp. 1972-1979, 2001.
[36] P. E. Freudenthal, M. Pommer, C. D. Meinhart, and B. D. Piorek, ”Quantum nanospheres for sub-micron particle image velocimetry,” Experiments in Fluids, vol. 43, pp. 525-533, 2007.
[37] J. C. Hulteen and R. P. Van Duyne, ”Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” Journal of Vacuum Science & Technology A, vol. 13, pp. 1553-1558, 1995.
[38] M. D. Savage, Avidin-biotin chemistry: a handbook: Pierce Chemical Company, 1992.
[39] A. I. Inc. T-20 USAF 1951 Chart Standard Layout Product Specifications. Available: http://www.aig-imaging.com/mm5/PDF/USAF%201951%20Test% 20Target%20T-20_v1-04.pdf
[40] E. F. GLYN. (2010). USAF 1951 and Microcopy Resolution Test Charts. efg’s. Available: http://www.efg2.com/Lab/ImageProcessing/TestTargets/#USAF19 51
指導教授 陳思妤(Szu-yu Chen) 審核日期 2015-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明