博碩士論文 101232005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.141.244.201
姓名 陳冠翔(Kuan-hsiang Chen)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 在矽基板上成長單晶鍺薄膜與矽鍺薄膜之研究
(Investigation of Single Crystalline Germanium and Silicon-Germanium Thin Film on Silicon Substrate)
相關論文
★ 偏壓式磁控濺鍍法製作矽異質接面太陽能電池之研究★ 高功率脈衝磁控濺鍍技術鍍製高硬度光學多 層膜的研究
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在以濺鍍法於矽基板上成長單晶鍺薄膜與單晶矽鍺薄膜,濺鍍之優勢在於製程不需使用有毒氣體且成本較低,若成功在矽晶圓上成長低表面缺陷之單晶鍺薄膜或單晶矽鍺薄膜則有機會能夠取代價格昂貴的鍺晶圓。矽的加入對於鍺薄膜來說具有降低差排錯位密度、提高光學能隙、減少薄膜吸光的效果,當矽鍺合金中,矽的含量小於15%時,對於提高能隙的效果最為明顯。此外,矽鍺的晶格常數會比鍺低,有助於成長高能隙的材料磷化鎵。
我們成功的在矽晶圓上以75 W、300℃、5 mTorr的製程條件製作出腐蝕坑密度為1.18×105 cm-2的(400)方向單晶鍺薄膜。矽鍺薄膜則在製程加氫氣、150 W、450℃、5 mTorr的製程條件成長出腐蝕坑密度為7.48×105 cm-2的(400)方向單晶矽鍺薄膜。且成功利用矽的加入將鍺的光學能隙由0.67~0.69 eV的範圍提升至0.74~0.81 eV。
摘要(英) This research aims at growing single crystalline germanium and silicon germanium thin films on silicon wafers by a sputtering method. The advantage of the sputtering method is its nontoxic process. If the single crystalline germanium or silicon-germanium films include low surface defects on silicon wafers, there will be the opportunity to replace the germanium wafer. Silicon alloyed germanium thin films can reduce the threading dislocation density, increase the optical band gap, and reduce the absorbance of the thin films. When the silicon content is less than 15% in the silicon-germanium alloy, the increasing in the band gap is obvious.
Finally, we have achieved the single crystalline germanium thin film on the silicon wafer with an etch-pit density of 1.18×105 cm-2, and the silicon-germanium thin film on the silicon wafer have achieved an etch-pit density of 7.48×105 cm-2. Moreover, we have increased the optical band gap of germanium thin film from the range of 0.67~0.69 eV to 0.74~0.81 eV by increasing silicon content.
關鍵字(中) ★ 鍺
★ 矽鍺
★ 單晶
★ 矽基板
關鍵字(英) ★ Germanium
★ Silicon-Germanium
★ Single Crystalline
★ Silicon Substrate
論文目次 第一章 緒論 1
1-1 前言 1
1-2 研究動機 1
1-3 研究目的與本文架構 3
第二章 文獻整理及基本回顧 4
2-1 鍺與矽鍺薄膜之材料特性 4
2-2 鍺與矽鍺薄膜之成長機制 5
2-3 鍺與矽鍺薄膜之製程方法比較 7
2-4 鍺與矽鍺薄膜於元件上之應用 8
第三章 實驗設備與實驗流程 10
3-1 製程設備 10
3-2 實驗流程 11
3-3 X光繞射儀(X-Ray Diffractometer, XRD) 13
3-4 拉曼光譜儀(Raman Spectrometer) 15
3-5 薄膜光學能隙計算 16
3-6 電子背向散射繞射(EBSD) 17
3-7 腐蝕坑密度(EPD) 18
第四章 鍺薄膜之實驗結果 19
4-1 基板對結晶之影響 20
4-2 調變溫度 22
4-2-1 製程不加氫氣之鍺薄膜 22
4-2-2 製程加氫氣之鍺薄膜 25
4-3 調變濺鍍功率 27
4-4 調變工作壓力 31
4-5 氫氣對鍺薄膜之影響 35
4-6 表面粗糙度 36
第五章 矽鍺薄膜之實驗結果 38
5-1 基板對結晶之影響 39
5-2 調變溫度 41
5-2-1 製程不加氫氣之矽鍺薄膜 41
5-2-2 製程加氫氣之矽鍺薄膜 44
5-3 調變濺鍍功率 47
5-4 調變工作壓力 51
5-5 氫氣對矽鍺薄膜之影響 54
5-6 表面粗糙度 54
第六章 結論與未來工作 56
6-1 結論 56
6-2 未來工作 58
參考文獻 59
參考文獻 1. M. Yamaguchi, T. Takamoto, K. Araki, “Super high-efficiency multi-junction and concentrator solar cells,” Solar Energy Materials & Solar Cells 90, 3068–3077 (2006).
2. R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” Presented at the 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 21–25 Sep. (2009).
3. N. A. Bojarczuk, M. Copel, S. Guha, V. Narayanan, E.J. Preisler, F.M. Ross, H. Shang, “Epitaxial silicon and germanium on buried insulator heterostructures and devices,” Applied Physics Letters 83, 5443 (2003).
4. J. Liu, D.D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D.T. Danielson, J. Michel, L.C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Applied Physics Letters 87, 011110 (2005).
5. http://userweb.eng.gla.ac.uk/douglas.paul/SiGe/lattice.html
6. J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nature Photonics 4, 527-534 (2010).
7. S. G. Thomas, S. Bharatan, R. E. Jones, R. Thoma, T. Zirkle, N. V. Edwards, R. Liu, X. D. Wang, Q. Xie, C. Rosenblad, J. Ramm, G. Isella, H. V. Kanel, “Structural characterization of thick, high-quality epitaxial Ge on Si substrates grown by low-energy plasma-enhanced chemical vapor deposition,” Journal of Electronic Materials 32, 976-980 (2003).
8. E. A. Fitzgerald, Y. H. Xie, M. L. Green, D. Brasen, A. R. Kortan, J. Michel, Y. J. Mii, B. E. Weir, “Totally relaxed GexSi1-x layers with low threading dislocation densities grown on Si substrates,” Applied Physics Letters 59, 811-813 (1991).
9. J. W. P. Hsu, E. A. Fitzgerald, Y. H. Xie, P. J. Silverman, M. J. Cardillo, “Surface morphology of related GexSi1-x films,” Applied Physics Letters 61, 1293-1295 (1992).
10. H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Applied Physics Letters 75, 2909-2911 (1999).
11. J. Hartmann, J. Damlencourt, Y. Bogumilowicz, P. Holliger, G. Rolland, T. Billon, “Reduced pressure-chemical vapor deposition of intrinsic and doped Ge layers on Si(001) for microelectronics and optoelectronics purposes,” Journal of Crystal Growth 274, 90-99 (2005).
12. T. F. Wietler, E. Bugiel, K. R. Hofmann, “Surfactant-mediated epitaxy of relaxed low-doped Ge films on Si(001) with low defect densities,” Applied Physics Letters 87, 182102 (2005).
13. G. Vanamu, A. K. Datye, S. H. Zaidi, “Heteroepitaxial growth on microscale patterned silicon structures,” Journal of Crystal Growth 280, 66-74 (2005).
14. J. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Applied Physics Letters 90, 052113 (2007).
15. G. H. Gilmer, M. H. Grabow, and A. F. Bakker, “Modeling of epitaxial growth,” Material Science and Engineering B6, 101-112 (1990).
16. J. A. Venables, “Introduction to surface and thin film processes,” Campridge Univ Press, (2000).
17. J. Villain, “Physics of Crystal Growth,” Cambridge University Press, (1998).
18. J. B. Hudson, “Surface Science: An Introduction,” John Wiley & Sons, Inc (1998).
19. G.-H. Lee, J. H. Yoon, “Role of Hydrogen in the Grain Growth in Microcrystalline Silicon Films,” Materials Research Society Symposium Proceedings 910, (2006).
20. M. Grydlik, M. Brehm, F. Hackl, F. Schaffler, G. Bauer, and T. Fromherz, “Unrolling the evolution kinetics of ordered SiGe islands via Ge surface diffusion,” Physical Review B 88, 115311 (2013).
21. Y.-J. Zheng, P. F. Ma, and J. R. Engstrom, “Etching by atomic hydrogen of Ge overlayers on Si(100),” Journal of Applied Physics 90, 3614 (2001).
22. H.-Y. Yua, J. H. Parka, A. K. Okyayb and K. Saraswatc, “Defect Reduction of Ge on Si by Selective Epitaxy and Hydrogen Annealing,” ECS Trans, volume 16, issue 10, 823-828 (2008).
23. S. Luryi, A. Kastalsky, and J. C. Bean, “New infrared detector on a silicon chip,” IEEE Transactions on electron devices 31, 1135-1139 (1984).
24. M. A. Wistey, Y. Y. Fang, J. Tolle, A. V. G. Chizmeshya, and J. Kouvetakis, “Chemical routes to Ge/Si(100) structures for low temperature Si-based semiconductor applications,” Applied Physics Letters 90, 082108 (2007).
25. M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Applied Physics Letters 72, 1718-1720 (1998).
26. C. Z. Chen, Y. Y. Zheng, S. H. Huang, C. Li, H. K. Lai, and S. Y. Chen, “Epitaxial growth of thick Ge layers with low dislocation density on silicon substrate by UHV/CVD,” Acta Physica Sinica-Chinese Edition 61, 078104 (2012).
27. S. G. Thomas, S. Bharatan, R. E. Jones, R. Thoma, T. Zirkle, N. V. Edwards, R. Liu, X. D. Wang, Q. H. Xie, C. Rosenblad, J. Ramm, G. Isella, and H. Von Kanel, “Structural characterization of thick, high-quality epitaxial Ge on Si substrates grown by low-energy plasma-enhanced chemical vapor deposition,” Journal of Electronic Materials 32, 976-980 (2003).
28. M. Labrune, X. Bril, G. Patriarche, L. Largeau, O. Mauguin, and P. Roca i Cabarrocas, “Epitaxial growth of silicon and germanium on (100)-oriented crystalline substrates by RF PECVD at 175°C,” European Physical Journal Photovoltaics 3, 30303 (2012).
29. E. A. Fitzgerald, M. T. Currie, S. B. Samavedam, T. A. Langdo, G. Taraschi, V. Yang, C. W. Leitz, and M. T. Bulsara, “Dislocations in Relaxed SiGe/Si Heterostructures,” physica status solidi (a) 171, 227-238 (1999).
30. M. Garozzo, G. Conte, F. Evangelisti, and G. Vitali, “Heteroepitaxial growth of Ge on (111) Si by vacuum evaporation,” Applied Physics Letters 41, 1070–1072 (1982).
31. Y. Ohmachi, T. Nishioka, and Y. Shinoda, “The heteroepitaxy of Ge on Si(100) by vacuum evaporation,” Journal of Applied Physics 54, 5466–5469 (1983).
32. G. Bajor, K. C. Cadien, M. A. Ray, J. E. Greene, and P. S. Vijayakumar, “Growth of high quality epitaxial Ge films on (100) Si by sputter deposition,” Applied Physics Letters 40, 696-697 (1982).
33. S. M. Pietralunga, M. Fere, M. Lanata, D. Piccinin, G. Radnoczi, F. Misjak, A. Lamperti, M. Martinelli, and P. M. Ossi, “Heteroepitaxial sputtered Ge on Si (100): Nanostructure and interface morphology,” Europhysics Letters 88, 28005 (2009).
34. M. A. Green, “Third generation photovoltaics: solar cells for 2020 and beyond,” Physica E 14, 65-70 (2002).
35. 伍秀菁, 真空技術與應用 = Vacuum technology & application: 新竹市 : 國科會精儀中心, (2001).
36. 王宣文, “以濺鍍法製作矽異質接面太陽能電池之硏究:矽薄膜特性對元件效率的影響 = Research of high efficiency silicon heterojunction solar cell fabricated by sputtering:impact of silicon thin film properties on device performance,” 博士論文--國立中央大學光電科學硏究所, 2012.
37. W. K. Choi, L. K. Teh, L. K. Bera, W. K. Chim, “Microstructural characterization of rf sputtered polycrystalline silicon germanium films,” Journal of Applied Physics 91, 444 - 450 (2002).
38. J. Tauc, “Amorphous and Liquid Semiconductors,” Plenum Press, 1974.
39. C.-Y. Tsao, P. Campbell, D. Song, M. A. Green, “Influence of hydrogen on structural and optical properties of low temperature polycrystalline Ge films deposited by RF magnetron sputtering,” Journal of Crystal Growth 312, 2647–2655 (2010).
40. C.-Y. Tsao, Z. Liu, X. Hao, M. A. Green, “In situ growth of Ge-rich poly-SiGe:H thin films on glass by RF magnetron sputtering for photovoltaic applications,” Applied Surface Science 257, 4354–4359 (2011).
41. G. Vanamu and A. K. Datye, “Epitaxial growth of high-quality Ge films on nanostructured silicon substrates,” Applied Physics Letters 88, 204104 (2006).
指導教授 陳昇暉(Sheng-hui Chen) 審核日期 2014-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明