博碩士論文 101232007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:34.204.173.45
姓名 黃裕軒(Yu-syuan Huang)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 有機平板波導元件電激發光特性之研究
(Study of Electroluminescent Property of Organic Slab Waveguide Device)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 有機薄膜材料電致發光及光子晶體共振腔研究
★ 微米光柵壓印有機太陽能電池主動層之研究★ 有機波導結構的ASE現象研究以及共振腔結構的模擬
★ 利用金屬微共振腔研究光與有機激發態強耦合現象★ 多層式雙極有機場效電晶體之研究
★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究
★ 有機染料分子薄膜之光電特性研究★ 多層結構有機電晶體之研究
★ 分離式二氧化鈦奈米管在染料敏化太陽能電池之運用★ 有機強耦合共振腔元件設計與發光量測系統架設之研究
★ 強耦合有機微共振腔之設計與研究★ 光激發有機極化子元件之製作與量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用有機高分子材料 PVK (Poly(9-vinylcarbazole)) 為空間層、有機小分子螢光材料BSB-Cz (4,4’-bis[(N-carbazole) styryl] biphenyl) 為發光層製作有機平板波導元件,並探究此板波導元件在高電流密度驅動之下電激發光特性。我們先從電性上的考量優化 PVK 之厚度,得到在 100 nm 的 PVK 有較佳的光電特性表現;其後固定 PVK 厚度為 100 nm,改變發光層 BSB-Cz 之厚度,發現在 BSB-Cz 厚度為 250 - 260 nm 時,會使元件側向量測到的截止波長落在 BSB-Cz 之 0-1振動放射峰,此為光增益係數最高之波段。最後我們固定 PVK 為 100 nm、BSB-Cz 為 250 或 260 nm,利用脈衝電壓給予高能量的注入,觀察側向發光強度與激發能量之變化。我們發現此有機波導元件在高電流密度驅動下仍具備相當穩定的電激發光效率。一般元件在電流密度超過 1 A/cm2 時,其側向發光強度與激發能量呈線性成長,沒有明顯發光衰減之情形。而有趣的是,在少數發光特別優異的元件中,有觀察到類似光放大的現象。相信在更進一步的優化電性與量測條件之下,能證實電激發自發輻射放大之現象。
摘要(英) In this thesis, we used a polymer material, PVK (Poly(9-vinylcarbazole)), as the spacer and a fluorescent small molecule, BSB-Cz (4,4’-bis[(N-carbazole) styryl] biphenyl), as the emission layer to fabricate the organic multilayer slab waveguide device, and investigated the electroluminescent properties of the device driven with high current density. First, we optimized the electrically property of devices by varying the thickness of PVK. The best performance was obtained with 100 nm thick PVK. After then, we fixed the PVK thickness at 100 nm and changed the thickness of emission layer (BSB-Cz). For 250-260 nm thick BSB-Cz the cutoff wavelength measured from the side emission spectrum was found to coincide with the 0-1 vibronic peak of BSB-Cz, which corresponds to the regime of the highest gain coefficient. Finally, we fixed the thickness of 100 nm for PVK and 250 nm or 260 nm for BSB-Cz and used pulse bias to drive the device with high energy. The variation of side emission intensity against pump energy was investigated. We observed that such a slab waveguide device could exhibit stable emission efficiency when driving with high current density. In general, the devices show a linear growth of the side emission versus pump energy without apparent emission roll-off phenomenon as the current density exceeds 1 A/cm2. Intriguingly, in some exceptional devices with superior emission property, we observed light amplification-like phenomena. We believe that with further optimization of the electrical properties and measurement conditions, the electrically pumped ASE phenomenon can be demonstrated.
關鍵字(中) ★ 有機
★ 平板波導元件
★ 電激發光
關鍵字(英) ★ Organic
★ Slab Waveguide Device
★ Electroluminescent
論文目次 摘要.................................I
Abstract............................II
致謝.................................III
圖目錄................................VI
表目錄................................IX
第一章 緒論..........................1
1.1 前言..............................1
1.2 研究動機與目的......................3
第二章 基本理論與計算..................6
2.1 有機發光二極體之架構與傳輸機制.........6
2.2 有機雷射...........................12
2.2.1 增益介質之性質....................12
2.2.2 共振腔..........................20
2.1.3 激發源...........................24
2.3 平板波導結構基礎理論與計算.............30
2.3.1 三層平板波導基礎理論................30
2.3.2 傳遞矩陣..........................37
2.3.3 截止波長..........................41
2.4 數據分析與計算........................45
2.4.1 外部量子效率計算....................45
2.4.2 電激發之激發能量計算.................46
第三章 實驗方法與架構.....................47
3.1 元件結構與製備........................47
3.2 量測儀器與架構........................52
第四章 結果與討論........................57
4.1 不同厚度 PVK 之光電特性分析.............57
4.2 不同厚度發光層之背向與側向頻譜比較與分析....61
4.3 高能量注入下元件之表現..................67
第五章 結論與未來展望.......................72
參考文獻..................................73
參考文獻 [1] J. S. Park, H. Chae, H. K. Chung and S. I. Lee, Semicond. Sci. Technol. 26, 034001 (2011).
[2] A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, IEEE J. Sel. Top. Quant. Electron 10, 1, (2004).
[3] C. Adachi, M. A. Baldo, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett. 77, 904 (2000).
[4] B. Stender, S. F. Völker, C. Lambert, and J. Pflaum, Adv. Mater. 25, 2943-2947 (2013).
[5] K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Chem. Rev. 107, 1233-1271 (2007).
[6] Y. Seino, H. Sasabe, Y. J. Pu, and J. Kido, Adv. Mater. 26, 1612–1616 (2014).
[7] L. Li, J. Liu, Z. Yu, and Q. Pei, Appl. Phys. Lett. 98, 201110 (2011).
[8] Z. Y. Liu, S. R. Tseng, Y. C. Chao, C. Y. Chen, H. F. Meng, S. F. Horng, Y. H. Wu, S. H. Chen, Synthetic Metals 161, 426–430 (2011).
[9] S. Sax, N. Rugen-Penkalla, A. Neuhold, S. Schuh, E. Zojer, E. J. W. List, and K. Mullen, Adv. Mater. 22, 2087–2091 (2010).
[10] E. Ahmed , T. Earmme , and S. A. Jenekhe, Adv. Funct. Mater. 21, 3889–3899 (2011).
[11] T. Ye, S. Shao, J. Chen, L. Wang, and D. Ma, ACS Appl. Mater. Interfaces 3, 410–416 (2011).
[12] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Appl. Phys. Lett. 91, 152111 (2007).
[13] J. Jang, S. H. Han, CURR APPL PHYS 6S1, e17–e21 (2006).
[14] Q. Wang , Y. Tao ,X. Qiao , J. Chen , D. Ma , C. Yang , and J. Qin, Adv. Funct. Mater. 21, 1681–1686 (2011).
[15] S. Chenais and S. Forget, Polym Int 61, 390–406 (2012).
[16] L. M. Chen, Z. Xu, Z. Hong, and Y. Yang, J. Mater. Chem. 20, 2575–2598 (2010).
[17] T. Earmme and S. A. Jenekhe, J. Mater. Chem. 22, 4660 (2012).
[18] J. Kim, S. H. Lim, and Y. S. Kim, J. AM. CHEM. SOC. 132, 42 (2010).
[19] N. Tessler, Adv. Mater. 11, 5 (1999).
[20] M. Ikai and S. Tokito, Appl. Phys. Lett. 79, 2 (2001).
[21] P. Andrew, G. A. Turnbull, I. D. W. Samuel, and W. L. Barnes, Appl. Phys. Lett. 81, 954 (2002).
[22] P. Görrn, T. Rabe, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91, 041113 (2007).
[23] P. Gorrn, T. Rabe, T. Riedl, W. Kowalsky, F. Galbrecht, and U. Scherf, Appl. Phys. Lett. 89, 161113 (2006).
[24] M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62, 10 958 (2000).
[25] M. A. Baldo, R. J. Holmes, and S. R. Forrest, Phys. Rev. B. 66, 035321 (2002).
[26] J. Meyer, S. Hamwi, T. Bülow, H.-H. Johannes, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91, 113506 (2007).
[27] H. Lee, S.W. Cho, K. Han, P. E. Jeon, C. N. Whang, K. Jeong, K. Cho, and Y. Yi, Appl. Phys. Lett. 93, 043308 (2008).
[28] C. C. Chang, M. T. Hsieh, J. F. Chen, S. W. Hwang, and C. H. Chen, Appl. Phys. Lett. 89, 253504 (2006).
[29] T. Matsushima, Y. Kinoshita, and H. Murata, Appl. Phys. Lett. 91, 253504 (2007).
[30] H. You, Y. Dai, Z. Zhang, and D. Ma, Appl. Phys. Lett. 101, 026105 (2007).
[31] X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z.Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M. Ding, W. Huang, and X. Y. Hou, J. Appl. Phys. 95, 3828 (2004).
[32] L. Hou, L. Duan, J. Qiao, W. Li, D. Zhang, and Y. Qiu, Appl. Phys. Lett. 92, 263301 (2008).
[33] J. Huang, T. Watanabe, K. Ueno, and Y. Yang, Adv. Mater. 19, 739–743 (2007).
[34] X. Zheng, Y. Wu, R. Sun, W. Zhu, X. Jiang, Z. Zhang, and S. Xu, Thin Solid Films 478, 252– 255 (2005).
[35] K. Morii, T. Kawase, and S. Inoue, Appl. Phys. Lett. 92, 213304 (2008).
[36] S. J. Su, T. Chiba, T. Takeda, and J. Kido, Adv. Mater 20, 2125–2130 (2008).
[37] S. H. Kim, J. Jang, and J. Y. Lee, Appl. Phys. Lett 90, 223505 (2007).
[38] P. Vacca, M. Petrosino, A. Guerra, R. Chierchia, C. Minarini, D. D. Sala,and A. Rubino, J. Phys. Chem. C 111, 17404-17408 (2007).
[39] C.C. Yap , M. Yahaya , M.M. Salleh, CURR APPL PHYS 8, 637–644 (2008).
[40] G. G. Malliaras, J. R. Salem, P. J. Brock, and C. Scott, Phys. Rev. B. 58, 20 (1998).
[41] C. E. Small, S. W. Tsang, J. Kido, S. K. So, and F. So, Adv. Funct. Mater. 22, 3261–3266 (2012).
[42] P. C. Kao, J. Y. Wang, J. H. Lin, and C. H. Yang, Thin Solid Films 527, 338–343 (2013).
[43] E. Ahmed, T. Earmme, and S. A. Jenekhe, Adv. Funct. Mater. 21, 3889–3899 (2011).
[44] B. Hu, L. Yan, and M. Shao, Adv. Mater. 21, 1500–1516 (2009).
[45] I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272-1295 (2007).
[46] B. Zhang, Y. Hou, F. Teng, Z. Lou, X. Liu, and Y. Wang, Appl. Phys. Lett. 96, 103303 (2010).
[47] B. Zhang, Y. Hou, Z. Lou, F. Teng, X. Liu, L. Meng, J. Shen, and Y. Wang, Appl. Phys. Lett. 101, 153305 (2012).
[48] M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Dı´az-Garcı´a, and A. J. Heeger, Phys. Rev. B. 58, 11 (1998).
[49] V. G. Kozlov, V. Bulovic’ , P. E. Burrows, and S. R. Forrest, Nature 389, 362 (1997).
[50] B. H. Wallikewitz, G. O. Nikiforov, H. Sirringhaus, and R. H. Friend, Appl. Phys. Lett. 100, 173301 (2012).
[51] B. H. Wallikewitz, M. D. I. Rosa, J. H.-W. M. Kremer, D. Hertel, and K. Meerholz, Adv. Mater. 22, 531–534 (2010).
[52] M. H. Song, D. Kabra, B. Wenger, R. H. Friend, and H. J. Snaith, Adv. Funct. Mater. 19, 2130–2136 (2009).
[53] 李正中,”薄膜光學與鍍膜技術” 第七版, 藝軒圖書出版社.
[54] A. E. Vasdekis, S. A. Moore, A. Ruseckas, T. F. Krauss, I. D. W. Samuel, and G. A. Turnbull, Appl. Phys. Lett 91, 051124 (2007).
[55] C. J. Yang, S. H. Liu, H. H. Hsieh, C. C. Liu, T. Y. Cho, and C. C. Wu, Appl. Phys. Lett 91, 253508 (2007).
[56] J. Lee, N. Chopra, D. Bera, S. Maslov, S. H. Eom, Y. Zheng, P. Holloway, J. Xue, and F. So, Adv. Energy Mater. 1, 174-178 (2011).
[57] J. Mezyk, F. Meinardi, R. Tubino, and M. Cocchi, Appl. Phys. Lett. 93, 093301 (2008).
[58] Y. Setoguchi and C. Adachi, J. Appl. Phys. 108, 064516 (2010).
[59] H. Fukagawa, K. Watanabe, T. Tsuzuki, and S. Tokito, Appl. Phys. Lett. 93, 133312 (2008).
[60] Z. Ma, S. Zhou, S. Hu, J. Yu, Journal of Luminescence 154, 376–380 (2014).
[61] J. Wang, J. Liu, S. Huang, X. Wu, X. Shi, C. Chen, Z. Ye, J. Lu, Y. Su, G. He, and Y. Zheng, Organic Electronics 14, 2854–2858 (2013).
[62] C. Murawski , P. Liehm , K. Leo , and M. C. Gather, Adv. Funct. Mater. 24, 1117–1124 (2014).
[63] M. Inoue, K. Goushi, K. Endo, H. Nomur, and C. Adachi, Journal of Luminescence 143, 754–758 (2013).
[64] R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, and M. Muccini, Nature Materials 9, 496-503 (2010).
[65] C. R. Pollock, and M. Lipson,“Integrated Photonics’’,Kluwer Academic Publishers (2003).
[66] 盧廷昌、王興宗,“半導體雷射技術”, 五南出版社 (2010).
[67] D. Yokoyama, M. Moriwake, and C. Adachi, J. Appl. Phys. 103, 123104 (2008).
[68] M. Pauchard, M. Vehse, J. Swensen, D. Moses, and A. J. Heeger, Appl. Phys. Lett. 83, 22 (2003).
[69] L. M. Blinov, G. Cipparrone, and P. Pagliusi, Appl. Phys. Lett. 89, 031114 (2006).
[70] A. Yariv and P. Yeh, “Optical Wave in Crystals”, Wiley Interscience publication (1984).
[71] J. F. Chang, M. C. Gwinner, M. Caironi, T. Sakanoue, and H. Sirringhaus, Adv. Funct. Mater. 20, 2825–2832 (2010).
[72] K. H. Yim, G. L. Whiting, C. E. Murphy, J. J. M. Halls, J. H. Burroughes, R. H. Friend, and J. S. Kim, Adv. Mater. 20, 3319-3324 (2008).
指導教授 張瑞芬(Jui-fen Chang) 審核日期 2014-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明