博碩士論文 101232012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:18.117.182.179
姓名 莊欣蓓(Hsin-pei Chuang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以同調結構照明顯微術進行散射樣本解析度之提升
(Resolution improvement in scattering samples based on coherent structured illumination microscopy.)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 應用線狀結構照明提升雙光子顯微鏡解析度
★ 掃描式二倍頻結構照明顯微術★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究
★ 鏡像輔助斷層掃描相位顯微鏡★ 以數位全像術重建多波長環狀光束之研究
★ 相位共軛反射鏡用於散射介質中光學聚焦之研究★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究
★ 倍頻非螢光基態耗損超解析之顯微成像方法★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用
★ 雙光子掃描結構照明顯微術★ 微投影光學切片超光譜顯微術
★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化★ 一次性多角度漫射光譜量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光學顯微鏡具備了非侵入式量測之優點,所以被廣泛應用在生物、材料等領域中可用來觀測與度量,但遠場光學顯微技術會受到光的波動性之影響,使得橫向解析度大約只能達到波長的一半,隨著科技越來越進步,對於光學顯微技術解析能力的要求也逐漸提高。
本文將會簡介目前最普遍使用的遠場超解析度顯微術-結構照明顯微術,與其影像的重建原理,因傳統式結構照明顯微術只能觀測具有螢光特性的樣本,所以開發出一套散射式結構照明顯微技術並搭配新的演算法,不但能提升顯微系統的解析度,對於樣本也無光破壞之問題,本系統主要是運用兩道平行光在像平面上作干涉,產生出具有結構性的照明光來激發樣品,藉由取得不同條紋方向及相位的散射影像來解出高頻率資訊,利用我們所架設之系統來觀察金奈米粒子,解析度僅能獲得1.2倍的提升,與理論值為1.44倍有些落差,將會在本文中探討實驗誤差的因素。
摘要(英) Optical microscopies have been applied widely for observations and measurements in fields of biology, materials, etc., mainly because of its non-invasive nature. However, the wave properties of light have limited the lateral resolutions of far-field optical microscopies to half of its excitation wavelength. Yet, as technology has greatly advanced, the expectations for the resolving power of optical microscopies have also grown a lot higher.
This article will introduce “Structured Illumination Microscopy (SIM),” a commonly applied far-field and super-resolution microscopy technique, and the principles of its image reconstruction.Since conventional structured illumination microscopies can only be used to observe samples with fluorescent properties, we’ve set up a coherent structured illumination microscopy system, and with the use of a phase-step algorithm, not only will the system’s resolution improve, it will also prevent photo bleaching in samples. In our system, a structured illumination pattern is produced by having two parallel lights interfere on the image plane, which is then used to excite the sample. And by obtaining the scattering images of different pattern directions and phases, we can solve the high frequency information. After setting up the system, we observed gold-nanoparticles, yet the resolution is enhanced only up to a factor of 1.2, which doesn’t match up with the theoretical value, 1.44. We will discuss the reasons of experimental errors later in this thesis.
關鍵字(中) ★ 解析度
★ 同調
★ 結構照明顯微術
★ 顯微術
關鍵字(英) ★ resolution
★ coherent
★ structured illumination microscopy
★ microscopy
論文目次 摘要…………………………………………………………………………………………………………………………………………i
Abstract……………………………………………………………………………………………………………………………ii
致謝……………………………………………………………………………………………………………………………………iii
目錄…………………………………………………………………………………………………………………………………………v
圖表索引……………………………………………………………………………………………………………………………vii
第一章 緒論……………………………………………………………………………………………………………1
1.1 研究目的與動機………………………………………………………………………………………………………1
1.2 光學顯微術簡述………………………………………………………………………………………………………2
1.2.1超解析技術簡介……………………………………………………………………………………………………4
1.2.2結構照明顯微系統之文獻回顧…………………………………………………………………………7
1.3 論文大綱……………………………………………………………………………………………………………………12
第二章 原理簡介………………………………………………………………………………………………13
2.1 成像原理……………………………………………………………………………………………………………………13
2.2同調成像與非同調成像的比較……………………………………………………………………………15
2.2.1非同調成像……………………………………………………………………………………………………………16
2.2.2同調成像…………………………………………………………………………………………………………………18
2.3 傳統結構照明顯微術……………………………………………………………………………………………20
2.3.1基本概念…………………………………………………………………………………………………………………20
2.3.2理論推導…………………………………………………………………………………………………………………23
2.4 散射式結構照明顯微術………………………………………………………………………………………26
2.4.1背景介紹…………………………………………………………………………………………………………………27
2.4.2理論推導…………………………………………………………………………………………………………………27
第三章 系統裝置 ……………………………………………………………………………………………31
3.1 實驗架構……………………………………………………………………………………………………………………31
3.2模擬結果………………………………………………………………………………………………………………………36
第四章 實驗結果與分析………………………………………………………………………………………………42
4.1金奈米粒子…………………………………………………………………………………………………………………42
4.2超解析影像…………………………………………………………………………………………………………………42
4.3數據分析………………………………………………………………………………………………………………………45
第五章 結論………………………………………………………………………………………………………………………50
第六章 參考資料……………………………………………………………………………………………………………52
參考文獻 [1] R. Heintzmann and C. G. Cremer, ”Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in BiOS Europe′98, pp. 185-196, 1999.
[2] M. Abramowitz, ” Fluorescence Microscopy: The Essentials,” Olympus America, Incorporated, Precision Instrument Division, 1993.
[3] S. Wischnitzer, ”Introduction to electron microscopy,” 1970.
[4] C. J. Chen, ”Introduction to scanning tunneling microscopy,” Oxford University Press, 1993.
[5] F. Zernike, ”Phase contrast, a new method for the microscopic observation of transparent objects part II,” Physica, vol. 9, pp. 974-986,1942.
[6] G. Nomarski, ”Microinterféromètre différentiel à ondes polarisées,” J. Phys. Radium 16, 9S-11S, 1955.
[7] M. Minsky, ”Memoir on inventing the confocal scanning microscope,” Scanning, vol. 10, pp. 128-138, 1988.
[8] http://www.uhasselt.be/UH/BIOMED-en/Biosensor-research-@-BIOMED/Principle-of-Confocal-Microscopy.html
[9] E. Abbe, ”Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,”Archiv für mikroskopische Anatomie, vol. 9, pp. 413-418, 1873.
[10] S. W. Hell and J. Wichmann, ”Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Optics letters, vol. 19, pp. 780-782, 1994.
[11] C. Cremer and T. Cremer, ”Considerations on a laser-scanning-microscope with high resolution and depth of field,” Microscopica acta, pp. 31-44, 1974.
[12] M. J. Rust, M. Bates, and X. Zhuang, ”Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature methods, vol. 3, pp. 793-796, 2006.
[13] Huang, W. Wang, M. Bates, and X. Zhuang, ”Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science, vol. 319, pp. 810-813, 2008.
[14] S. T. Hess, T. P. Girirajan, and M. D. Mason, ”Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophysical journal, vol. 91, pp. 4258-4272, 2006.
[15] M. G. Gustafsson, D. A. Agard, and J. W. Sedat, ”Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses,” in IS&T/SPIE′s Symposium on Electronic Imaging: Science & Technology, pp. 147-156, 1995.
[16] B. Harke, J. Keller, C. K. Ullal, V. Westphal, and S. W. Hell, ”Resolution scaling in STED microscopy,” Optics express, vol. 16, pp. 4154-4162, 2008.
[17] B. A. Truong-Quang and P. F. Lenne, ”Membrane microdomains: from seeing to understanding,” Frontiers in plant science, vol. 5, 2014.
[18] M. G. Gustafsson, ”Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” Journal of microscopy, vol. 198, pp. 82-87, 2000.
[19] T. Kim, D. Gweon, and J.-H. Lee, ”Enhancement of fluorescence confocal scanning microscopy lateral resolution by use of structured illumination,” Measurement Science and Technology, vol. 20, p. 055501, 2009.
[20] B. R. Masters and A. A. Thaer, ”Real-time scanning slit confocal microscopy of the in vivo human cornea,” Applied optics, vol. 33, pp. 695-701, 1994.
[21] W. Denk, J. H. Strickler, and W. W. Webb, ”Two-photon laser scanning fluorescence microscopy,” Science, vol. 248, pp. 73-76, 1990.
[22] http://ansom.research.pdx.edu/introduction/multi-photon-non-linear-optical -microscopy/
[23] http://www.samwoosc.co.kr/Nikon/A1R%20MP.htm
[24] G. Zhu, J. Van Howe, M. Durst, W. Zipfel, and C. Xu, ”Simultaneous spatial and temporal focusing of femtosecond pulses,” Optics Express, vol. 13, pp. 2153-2159, 2005.
[25] M. E. Durst, G. Zhu, and C. Xu, ”Simultaneous spatial and temporal focusing in nonlinear microscopy,” Optics communications, vol. 281, pp. 1796-1805, 2008.
[26] K. Isobe, T. Takeda, K. Mochizuki, Q. Song, A. Suda, F. Kannari, et al., ”Enhancement of lateral resolution and optical sectioning capability of two-photon fluorescence microscopy by combining temporal-focusing with structured illumination,” Biomedical optics express, vol. 4, pp. 2396-2410, 2013.
[27] http://www.doitpoms.ac.uk/tlplib/diffraction/image.php
[28] http://zeiss-campus.magnet.fsu.edu/articles/basics/resolution.html
[29] J. Goodman, ”Introduction to Fourier optics,” 2008.
[30] http://www.aandb.com.tw/Page0004/fl_04_ls_55.html
[31] http://abrc.sinica.edu.tw/icm/app_out/main/theorem.php
[32] M. W. Davidson and M. Abramowitz, ”Optical microscopy,” Encyclopedia of imaging science and technology, 2002.
[33] M. Pluta, ”Advanced Light Microscopy, Volume 3: Measuring Techniques,” Elsevier,1989.
[34] B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, et al., ”Coherent super-resolution microscopy via laterally structured illumination,” Micron, vol. 38, pp. 150-157, 2007.
[35] S. Chowdhury, A. H. Dhalla, and J. Izatt, ”Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples,” Biomedical optics express, vol. 3, pp. 1841-1854, 2012.
[36] http://en.wikipedia.org/wiki/Optical_resolution
[37] P. Bao, A. G. Frutos, C. Greef, J. Lahiri, U. Muller, T. C. Peterson, et al., ”High-sensitivity detection of DNA hybridization on microarrays using resonance light scattering,” Analytical chemistry, vol. 74, pp. 1792-1797, 2002.
[38] R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. J. Parak, ”Biological applications of gold nanoparticles,” Chemical Society Reviews, vol. 37, pp. 1896-1908, 2008.
[39] K. Wicker, O. Mandula, G. Best, R. Fiolka, and R. Heintzmann, ”Phase optimisation for structured illumination microscopy,” Optics express, vol. 21, pp. 2032-2049, 2013.
[40] Y. D. Kim, M. Ahn, T. Kim, H. Yoo, and D. Gweon, ”Design and analysis of a cross-type structured-illumination confocal microscope for high speed and high resolution,” Measurement Science and Technology, vol. 23, p. 105403, 2012.
指導教授 陳思妤(Szu-yu Chen) 審核日期 2015-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明