博碩士論文 101232018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:174 、訪客IP:54.174.43.27
姓名 黃曉薇(Hsiao-wei Huang)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 含漸變銦含量主動層的氮化銦鎵太陽能電池
(InGaN-based solar cells with composition-graded junction)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 液晶/單體中光聚合效應的圖案轉換觀察和由Z-scan方法鑑定非線性光學現象★ 矽基板上的氮化鎵異質磊晶術
★ 矽基板上的氮化物太陽能電池★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用
★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
★ 成長於氧化鋅緩衝層之自發性P型氮化鎵★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井
★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自從J. Wu等人在2002年發現了氮化銦(InN)的真實能隙大小約為0.7電子伏特(~0.7 eV),三族氮化物(III-Nitrides)便成了熱門的太陽能電池材料,因為氮化銦鎵(InGaN)化合物的能隙範圍在0.7 eV到3.4 eV之間,幾乎涵蓋了太陽光譜全部的波長範圍。儘管許多研究都指出含漸變銦含量的太陽能電池具有優秀的性能表現,但多數為模擬或理論的結果,含漸變銦含量主動層的氮化銦鎵太陽能電池的潛力需要經由實驗結果的證明。
在我們的研究當中,我們製備的樣品有:氮化鎵/氮化銦鎵多重量子井太陽能電池、氮化鎵/氮化銦鎵p-i-n太陽能電池,以及含漸變銦含量主動層的氮化銦鎵太陽能電池。所有元件皆以有機金屬化學氣相沉積法(MOCVD)生長於藍寶石(sapphire)基板上,並且透過光致發光、在AM1.5G太陽光模擬器下的電流-電壓太陽能電池特性曲線、外部量子效率以及X光繞等方法分析。雖然銦含量漸變的主動層有比較高的填充因子,該元件的轉換效率卻低於含量子井主動層的太陽能電池。除了氮化銦鎵的磊晶層品質應提升外,消除氮化鎵和氮化銦鎵之間的能帶斷層(band offest)也可能提升光載子的收集,因而增加元件的轉換效率。
摘要(英) III-Nitrides have become the potential material for solar cells (SCs) since the true band gap of InN (~0.7 eV) was discovered by J. Wu et al. in 2002. The band gap of the InGaN can be varied from 0.7 eV to 3.4 eV, covering nearly the full solar spectrum. Although many theoretical studies indicate that graded InGaN junctions exhibit great potential for high-efficiency SCs, the photovoltaic performances of graded InGaN junctions have not been studied to date.
In this project, III-nitride SCs with three types of active region were fabricated: InGaN/GaN multiple quantum wells (MQW), the unintentionally doped InGaN single junction, and the InGaN junction with step-graded indium composition. All the samples were grown by metal organic chemical vapor deposition (MOCVD). Material/device characterizations were performed with photoluminescence (PL), X-ray diffraction, I-V curves under solar illumination, and external quantum efficiency (EQE). It is found that the device with graded junction, despite her larger fill factor, exhibits lower conversion efficiency than the one with MQW structure. The results were attributed to the inferior crystal qualities with the composition-graded junction. Carrier collection efficiency (and thus conversion efficiency) of the graded junction can also be improved by eliminating the band offset at the InGaN/n-GaN interface.
關鍵字(中) ★ 氮化銦鎵
★ 太陽能電池
關鍵字(英) ★ InGaN
★ solar cell
★ photovoltaic
論文目次 Contents
中文摘要 i
ABSTRACT ii
Acknowledge iii
Contents iv
List of tables vi
List of figures vii
List of symbols x
Chapter 1 Introduction 1
1.1 Group III-Nitrides 1
1.2 Why III-Nitrides for solar cells? 4
1.3 p-i-n solar cells 6
1.4 MQW solar cells 8
1.5 Graded bandgap solar cells 9
1.6 Motivation and thesis overview 13
Chapter 2 Experiment 20
2.1 Epitaxial structure 20
2.2 Device fabrication 23
2.3 Characterization tools 25
2.3.1 Photoluminescence 25
2.3.2 I-V Curve under the AM1.5G illumination 27
2.3.3 External quantum efficiency 29
2.3.4 X-ray diffraction 32
Chapter 3 Results and discussions 34
3.1 PL feature 34
3.2 XRD feature 37
3.3 EQE feature 39
3.4 I-V Curve feature 42
Chapter 4 Conclusion and future work 45
Reference 49
參考文獻 [1] Hadis Morkoc, Handbook of Nitride Semiconductors and Devices, Volume 1, Materials Properties, Physics and Growth, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008.
[2] Masaki Ueno, Minoru Yoshida, & Akifumi Onodera, “Stability of the wurtzite-type structure under high pressure: GaN and InN ”, PHYSICAL REVIEW B, Vol 49, Number 1, pp. 14-21, January 1994.
[3] Feng Shi, “GaN Nanowires Fabricated by Magnetron Sputtering Deposition ”, Nanowires - Fundamental Research, Chapter 11, pp. 225, Abbass Hashim, InTech, July 2011.
[4] Fabio Bernardini and Vincenzo Fiorentini, “Spontaneous polarization and piezoelectric constants of III-V nitrides ”, PHYSICAL REVIEW B, Vol 56, No. 16, pp. R10024, 1997.
[5] O. Ambacher et al., “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures ”, Journal of Applied Physics, Vol 85, No. 6, pp. 3222-3232, March 1999.
[6] C.J. Rawn and Chaudhuri, “LATTICE PARAMETERS OF GALLIUM NITRIDE AT HIGH TEMPERATURES AND RESULTING EPITAXIAL MISFITS WITH ALUMINA AND SILICON CARBIDE SUBSTRTTES ”, Advances in X-ray Analysis, Vol 43, International Centre for Diffraction Data, 2000.
[7] J. Wu et al., “Unusual properties of the fundamental band gap of InN ”, Applied Physics Letters, Vol 80, No. 21, p.p. 3967-3969, 27 May 2002.
[8] V. Yu. Davydov et al., “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1) ”, physica status solidi (b), Vol 230, No. 2, pp. R4-R6, February 2002.
[9] B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra ”, PHYSICAL REVIEW B, Vol 10, No 2, July 1974.
[10] W. M. Yim, “Epitaxially grown AlN and its optical band gap ”, Journal of Applied Physics, Vol 44, 1973.
[11] Isamu AKASAKI and Hiroshi AMANO, “Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters ”, Japanese Journal of Applied Physics, Vol 36, pp. 5393-5408, September 1997.
[12] H. P. Maruska and J. J. Tietjen, “THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN ”, Applied Physics Letters ,Vol 15, pp. 327, August 1969.
[13] J. Wu et al., “Small band gap bowing in In1ÀxGaxN alloys ”, Applied Physics Letters, Vol 80, No. 25, 24 June 2002.
[14] Lucas Alves, “High-Efficiency Solar Coatings ”, 23 June 2010.From: http://www.solarnovus.com/high-efficiency-solar-coatings_N936.html
[15] Tigran T. Mnatsakanov et al., “Carrier mobility model for GaN ”, Solid-State Electronics, Vol 47, pp. 111-115, 2003.
[16] J. F. Muth et al., “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements ”, Applied Physics Letters, Vol 71, pp. 2572-2574, 1997.
[17] Nakamura S, Mukai T, Senoh M, “In situ monitoring and Hall measurements of GaN grown with GaN buffer layers ”, Journal of Applied Physics, Vol 71, pp. 5543-5549, 1992.
[18] Rubin et al., “p-Type gallium nitride by reactive ion-beam molecular beam
epitaxy with ion implantation, diffusion, or evaporation of Mg ”, Applied Physics Letters,Vol 64, pp. 64-66, 1994.
[19] Jeramy Dickerson et al., “Modeling of N-i-P Vs. P-i-N InGaN Solar Cells with Ultrathin GaN Interlayers for Improved Performance ”, NUSOD, pp. 113-114, Shanghai, China, August 2012.
[20] Xiamei Cai et al., “Investigation of InGaN p-i-n Homojunction and Heterojunction Solar Cells ”, IEEE PHOTONICS TECHNOLOGY LETTERS, Vol 25, NO. 1, January 2013.
[21] Y. Zhang et al., “The effect of dislocations on the efficiency of InGaN/GaN solar cells ”, Solar Energy Materials and Solar Cells, Vol 117, pp. 279-284, 2013.
[22] Paul STERIAN et al., “A STUDY OF THE OPTICAL PROPERTIES OF QUANTUM WELL SOLAR CELLS AIMED AT OPTIMIZING THEIR CONFIGURATION ”, U.P.B. Sci . Bull., Series A, Vol 72, pp.9-20, 2010.
[23] J. J. Wierer et al., “Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells ”, Applied Physics Letters, Vol 100,pp. 111119, 2012.
[24] G.F. Brown et al., “Finite element simulations of compositionally graded InGaN solar cells ”, Solar Energy Materials and Solar Cells, Vol 94,pp. 478–483, 2010.
[25] V. Gorge et al., “Theoretical analysis of the influence of defect parameters on photovoltaic performances of composition graded InGaN solar cells ”, Materials Science and Engineering B, Vol 178,pp. 142– 148, 2013.
[26] I.M. Dharmadasa, “Third generation multi-layer tandem solar cells for achieving high conversion efficiencies ”, Solar Energy Materials and Solar Cells, Vol 85, pp. 293–300, 2005.
[27] Ashraful Ghani Bhuiyan et al., “InGaN Solar Cells: Present State of the Art and Important Challenges ”, IEEE JOURNAL OF PHOTOVOLTAICS, Vol 2, No 3, July 2012.
[28] C. Yang et al., “Photovoltaic effects in InGaN structures with p–n junctions ”, physica status solidi (a), Vol 204, No. 12, pp. 4288–4291, October 2007.
[29] O. Jani, H. Yu et al., “Effect of phase separation on performance of III–V nitride solar cells ”, presented at the 22nd Eur. Photovoltaic Solar Energy Conf., Milan, Italy, September 2007.
[30] X. Chen et al., “Growth, fabrication, and characterization of InGaN solar cells ”, physica status solidi (a), Vol. 205, No 5, pp. 1103–1105, May 2008.
[31] X. Chen et al., “Characterization of Mg-doped InGaN and InAlN alloys grown by MBE for solar applications ”, presented at the 33rd IEEE Photovoltaic Specialists Conf., San Diego, CA, May 2008.
[32] P. Misra et al., “Fabrication and characterization of 2.3eV InGaN photovoltaic devices ”, presented at the 33rd IEEE Photovoltaic Specialists Conf., San Diego, CA, May 2008.
[33] O. Jani et al., “Optimization of GaN window layer for InGaN solar cells using polarization effect ”, presented at the 33rd IEEE Photovoltaic Specialists Conf., San Diego, CA, May 2008.
[34] A. Yamamoto et al., “Mg-doping and N+ -P junction formation in MOVPE grown InxGa1-xN (x ∼ 0.4) ”, presented at the 33rd IEEE Photovoltaic Specialists Conf., San Diego, CA, May 2008.
[35] A. Yamamoto et al., “Recent advances in InN-based solar cells: Status and challenges in InGaN and InAlN solar cells ”, physica status solidi (c), Vol 7, No 5, pp. 1309–1316, March 2010.
[36] X.-M. Cai et al., “Favourable photovoltaic effects in InGaN pin homojunction solar cell ”, Electronics Letters, Vol 45, No 24, pp. 1266–1267, November 2009.
[37] X.-M. Cai, S.-W. Zeng, and B.-P. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell ”, Applied Physics Letters, Vol 95, No 17, pp. 173 504-1–173 504-3, October 2009.
[38] B. R. Jampana et al., “Design and realization of wideband-gap (∼ 2.67 eV) InGaN p-n junction solar cell ”, IEEE Electron Device Letters, Vol 31, No 1, pp. 32–34, January 2010.
[39] C. Boney et al., “Growth and characterization of InGaN for photovoltaic devices ”, physica status solidi (c), Vol 8, No 7–8, pp. 2466–2668, July 2011.
[40] Xiaomei Cai et al., “Investigation of InGaN p-i-n Homojunction and Heterojunction Solar Cells ”, IEEE PHOTONICS TECHNOLOGY LETTERS, Vol 25, No 1, pp. 59-62, January 2013.
[41] Liwen Sang et al., “Temperature and Light Intensity Dependence of Photocurrent Transport Mechanisms in InGaN p–i–n Homojunction Solar Cells ”, Japanese Journal of Applied Physics, Vol 52, pp. 08JF04-1-08JF04-4, 2013.
[42] Yung-Chi Yao et al., “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells ”, Applied Physics Letters, Vol 103, pp. 193503-1-193503-5, 2013.
[43] O. Jani et al., “Design and characterization of GaN/InGaN solar cells ”, Applied Physics Letters, Vol 91, No 13, pp. 132117-1–132117-3, September 2007.
[44] C. J. Neufeld et al., “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap ”, Applied Physics Letters, Vol 93, No 14, pp. 143 502-1–143502-3, October 2008.
[45] X. Zheng et al., “High-quality InGaN/GaN heterojunctions and their photovoltaic effects ”, Applied Physics Letters, Vol 93, No 26, pp. 261108-1–261 108-3, December 2008.
[46] R. Dahal et al., “InGaN/GaN multiple quantum well solar cells with long operating wavelengths ”, Applied Physics Letters, Vol 94, No 6, pp. 063505-1–063505-3, February 2009.
[47] J.-K. Sheu et al., “Demonstration of GaN-based Solar Cells with GaN/InGaN superlattice absorption layers ”, IEEE Electron Device Letters, Vol 30, No 3, pp. 225–227, March 2009.
[48] M.-J. Jeng, Y.-L. Lee, and L.-B. Chang, “Temperature dependences of Inx Ga1−xN multiple quantum well solar cells ”, Journal of Physics D: Applied Physics, Vol 42, No 10, pp. 105101-1–105101-6, April 2009.
[49] R.-H. Horng et al., “Improved conversion efficiency of GaN/InGaNthin-film solar cells ”, IEEE Electron Device Letters, Vol 30, No 7, pp. 724–726, July 2009.
[50] K. Y. Lai et al., “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells ”, Applied Physics Letters, Vol 96, No 8, pp. 081103-1–081103-3, February 2010.
[51] C.-L. Tsai et al., “Substrate-free large gap InGaN solar cells with bottom reflector ”, Solid-State Electronics, Vol 54, No 5, pp. 541–544, May 2010.
[52] C. C. Yang et al., “Enhancement of the conversion efficiency of GaN-based photovoltaic devices with Al-GaN/InGaN absorption layers ”, Applied Physics Letters, Vol 97, No 2, pp. 021113-1–021113-3, July 2010.
[53] R. Dahal et al., “InGaN/GaN multiple quantum well concentrator solar cells ”, Applied Physics Letters, Vol 97, No 7, pp. 073115-1–073115-3, August 2010.
[54] Y. Kuwahara et al., “Realization of nitride-based solar cell on freestanding GaN substrate ”, Applied Physics Express, Vol 3, No 2, pp. 111001-1–111001-3, October 2010.
[55] Y. Kuwahara et al., “GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate ”, Applied Physics Express, Vol 4, No 2, pp. 021001-1–021001-3, January 2011.
[56] T. Fujii et al., “GaInN-based solar cells using GaInN/GaInN superlattices ”, physica status solidi (c), Vol 8, No 7–8, pp. 2463–2665, July 2011.
[57] E. Matioli et al., “High internal and external quantum efficiency In-GaN/GaN solar cells ”, Applied Physics Letters, Vol 98, No 2, pp. 021102-1–021102-3, January 2011.
[58] H. C. Lee et al., “Study of electrical characteristics of GaN based photovoltaics with graded InxGa1−xN absorption layer ”, IEEE Photonics Technology Letters, Vol 23, No 6, pp. 347–349, March 2011.
[59] J. R. Lang et al., “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3 –based molecular beam epitaxy ”, Applied Physics Letters, Vol 98, No 13, pp. 131115-1–131115-3, April 2011.
[60] J.-P. Shim et al., “InGaNbased p–i–n solar cells with graphene electrodes ”, Applied Physics Express, Vol 4, No 5, pp. 052302-1–052302-3, May 2011.
[61] Y.-J. Lee et al., “Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate ”, Applied Physics Letters, Vol 98, No 26, pp. 263504-1–263504-3, June 2011.
[62] B. W. Liou, “Design and fabrication of InxGa1 −xN/GaN solar cells with a multiple-quantum well structure on SiCN/Si(111) substrates ”, Thin Solid Films, Vol 520, No 3, pp. 1084–1090, November 2011.
[63] Mu-Tao Chu et al., “Growth and Characterization of p-InGaN/i-InGaN/n-GaN Double-Heterojunction Solar Cells on Patterned Sapphire Substrates ”, IEEE ELECTRON DEVICE LETTERS, Vol 32, No 7, pp. 922-924, July 2011.
[64] P. H. Fu et al., “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs ”, Applied Physics Letters, Vol 100, pp. 013105-1-013105-4, January 2012.
[65] J. J. Wierer Jr., D. D. Koleske, and S. R. Lee, “Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells ”, Applied Physics Letters, Vol 100, pp. 111119, March 2012.
[66] Tae Hoon Seo et al., “Improved photovoltaic effects in InGaN-based multiple quantum well solar cell with graphene on indium tin oxide nanodot nodes for transparent and current spreading electrode ”, Applied Physics Letters, Vol 102, pp. 031116-1-031116-4, January 2013.
[67] Zhiwei Ren et al., “Enhanced performance of InGaN/GaN based solar cells with an In0.05Ga0.95N ultra-thin inserting layer between GaN barrier and In0.2Ga0.8N well ”, OPTICS EXPRESS, Vol 21, No 6, pp. 7118-7124, March 2013.
[68] N. G. Young et al., “High performance thin quantum barrier InGaN/GaN solar cells on sapphire and bulk (0001) GaN substrates ”, Applied Physics Letters, Vol 103, pp. 173903-1-173903-5, October 2013.
[69] Sirona Valdueza-Felip et al., “Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration ”, Applied Physics Express, Vol 7, pp. 032301-1-032301-4, February 2014.
[70] N. G. Young et al., “High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration ”, Applied Physics Letters, Vol 104, pp. 163902-1-163902-4, April 2014.
[71] KK PhD, “Mass flow controllers and finding one′s path ”, September 2013. From:http://laserboyfriend.blogspot.tw/2013/09/mass-flow-controllers-and-finding-ones.html
[72] K Hannewald, S Glutsch, and F Bechstedt, “Nonequilibrium theory of photoluminescence excitation spectroscopy in semiconductors ”, physica status solidi (b), Vol 238, pp. 517-520, August 2003.
[73] Jia-Min Shieh et al., “Photoluminescence: Principles, Structure,and Applications ”, NANO COMMUNICATION, Vol 12, pp. 28-39, 2005.
[74] Elison Matioli et al., “High internal and external quantum efficiency InGaN/GaN solar cells ”, Applied Physics Letters, Vol 98, pp. 021102, 2011.
[75] “Solar Cell Spectral Response Measurement System QE-R Operation Manual ”, Enli Technology Co., Ltd.
[76] ChemViews, 100th Anniversary of the Discovery of X-ray Diffraction, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012.
[77] Jeremy Karl Cockcroft , “Generation of X-rays ”, August 2001.From: http://pd.chem.ucl.ac.uk/pdnn/inst1/xrays.htm
[78] “X-ray Generation and Powder Diffraction ”.From: http://ruby.colorado.edu/~smyth/G30105.html
[79] L. W. Tu et al., “Spatial distributions of near-band-gap uv and yellow emission on MOCVD grown GaN epifilms ”, PHYSICAL REVIEW B, Vol 58, No 16, p.p. 10 696-10 699, 15 October 1998.
[80] Fong Kwong Yam et al., “Gallium Nitride: An Overview of Structural Defects ”, Chapter 4, p.p. 99-136, Prof. P. Predeep, InTech, 26 September 2011.
[81] Jörg Neugebauer and Chris G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN ”, Applied Physics Letters, Vol 69,p.p. 503, 1996.
[82] Jen-Hsiung Liao, “Photovoltaic characteristics of Si-doped GaN: the potential for intermediate band solar cells ”, National Central University, July 2013.
[83] A. Martí et al., “Potential of Mn doped In1−xGaxN for implementing intermediate band solar cells ”, Solar Energy Materials and Solar Cells, Vol 93, p.p. 641-644, May 2009.
[84] Nazmul Ahsan et al., “Two-photon excitation in an intermediate band solar cell structure ”, Applied Physics Letters,Vol 100, p.p. 172111, 2012.
[85] A. G. Bhuiyan et al., “InGaN Solar Cells: Present State of the Art and Important Challenges ”, IEEE Journal of Photovoltaics, Vol 2, No 3, p.p. 276‐293, 2012.
[86] Yijun Zhang et al., “High-efficiency graded band-gap AlxGa1xAs/GaAs photocathodes grown by metalorganic chemical vapor deposition ”, Applied Physics Letters, Vol 99, p.p. 101104, 2011.
指導教授 賴昆佑(Kun-yu Lai) 審核日期 2014-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明