博碩士論文 101235001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:3.139.108.37
姓名 張育庭(Yu-Ting Chang)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 以跨顱交流電刺激探討左側頂葉與顳葉腦區在視覺工作記憶扮演之角色
(Using transcranial alternating current stimulation to investigate the involvement of the left parietal and temporal cortex in visual working memory)
相關論文
★ 時間及空間對注意力暫失的影響 以及其可能的神經生理機制★ 注意力分配及眼球運動準備歷程對於眼動潛伏時間與眼動軌跡的影響
★ 注意力暫失中的數字表徵: 數字距離對注意力暫失的影響★ 利用跨顱磁刺激探討主動式注意力攫取的神經機制
★ 以數學模型及跨顱磁刺激探討注意力分配及眼球運動準備歷程★ 學齡前兒童之視覺注意力發展及電腦化注意力訓練效果之探討
★ 以跨顱磁刺激探討左側下部頂葉以及左側上部頂葉的功能在中文處理中所扮演的角色★ 性侵害犯的衝動行為表現-情緒狀態如何影響性侵害犯的抑制能力?
★ 學齡前階段孩童眼動抑制能力的發展和特性★ 學齡前階段孩童衝突解決和動作反應抑制能力的發展
★ 6歲孩童與成人在數字和具體數量上的自動化處理★ 期望效果之影響與可能的神經機制
★ Attentional reorienting: the dynamic interaction between goal-directed and stimulus-driven attentioinal control★ 前額葉眼動區在視覺搜尋作業上對不同干擾物特徵與顯示時間扮演的角色
★ Roles of the Pre-supplementary Motor Area and Right Inferior Frontal Gyrus in Stimulus Selective Stop-signal task: A Theta Burst Transcranial!Magnetic! Stimulation!Study★ Investigation of posterior parietal cortex visuospatial control over processing in near and far space using transcranial magnetic stimulation
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 視覺訊息整合與連結的議題 (binding problem) 旨在探討多項不同的視覺資訊是如何被平行的整合為一個完整、統一的心智表徵:例如一個完整的物件、知覺的連貫性、甚或是一個完整的情節記憶。除了知覺層次的連結外,視覺資訊的連結是如何被持續的維持,而能夠成為短期或是長期記憶同樣是重要的研究課題。本研究聚焦於物體的顏色與形狀的特徵連結,以及該連結在視覺工作記憶背後的神經震盪 (oscillation) 機制。
儘管特徵連結現象在我們的日常生活經驗中看似不費吹灰之力,先前研究卻顯示處理多特徵物體的過程不論在行為或是神經生理的層次都並非沒有代價。最近的一項腦造影研究顯示當多特徵物體消失在我們的視野後,維持這樣的特徵連結可能需要左側頂葉與顳葉腦區的參與。該研究結果與許多先前指出頂葉似乎在視覺訊息整合,以及整合之後如何維持在工作記憶之中,扮演關鍵角色的觀點相符。此外,數個電生理的研究顯示伽馬頻段的神經震盪 (gamma frequency oscillation) 與工作記憶的負擔以及特徵連結、連貫性的視覺感知皆有密切關係。這引發了一項假說:特徵連結視覺工作記憶,可能是藉著顳葉與頂葉以伽馬頻段震盪進行訊息溝通與傳送而產生。頂葉在這個心智過程中可能扮演著類似「黏著劑」的角色,負責在景象消失之後仍持續的將構成物體的各個特徵連結在一起。然而,這項假說的因果關係並無法僅藉著相關性的研究工具回答。因而,本研究採用伽馬頻段 (gamma frequency)的跨顱交流電刺激技術 (tACS, transcranial alternating current stimulation),同時調節左側顳葉與頂葉腦區的神經震盪模式,藉此釐清這兩個腦區的神經震盪模式與特徵連結視覺工作記憶 (binding-VWM) 的因果關係。
實驗一的結果證實了先前研究的發現,相較單一特徵,多特徵連結的視覺工作記憶是較為困難的。本研究的實驗二觀察到了一個顯著的作業變項 (僅需記住形狀 vs. 須記住形狀與顏色的連結) 與電刺激變項 (異相位的伽瑪跨顱交流電刺激 vs. 假性刺激) 的交互作用。這個交互作用來自於跨顱交流電刺激能夠專一性的提升受試者在進行特徵連結工作記憶的表現。值得注意的是,該電刺激在行為上的調節效果橫跨了電刺激進行的時段以及電刺激關閉以後的實驗階段,顯示該刺激效果能夠在結束刺激後維持至少一段時間。實驗二的發現支持了特徵連結視覺工作記憶可能是藉著顳葉與頂葉以伽馬頻段震盪,進行訊息溝通與傳送而產生的假說。此外,本研究的數據也顯示,該電刺激的調節效果與原本受試者間既有的個體差異存在著交互作用。這項交互作用來自於本實驗所採用的異相位伽瑪跨顱交流電刺激僅能提升低表現組的工作記憶,卻無法再進一步幫助高表現組。為了進一步確立該電刺激參數在實驗二效果的專一性,本研究於實驗三採取和實驗二完全一樣的交流電頻段並施打在一樣的兩個腦區,但使兩個腦區接受同相位的電刺激。實驗三的結果顯示,不論是單一特徵的作業或是特徵連結的作業,皆沒有發現任何電刺激在高表現組或低表現組有任何的效果。這些結果顯示實驗二的伽瑪跨顱交流電刺激效果具有一定程度的專一性。
綜上所述,我們的研究再次的證實了特徵連結視覺工作記憶是耗費認知資源的;然而,低表現者卻能夠藉著同時施加在左側顳葉與頂葉的異相位伽瑪交流電刺激而提昇表現,顯示特定的神經機制在支持著這些腦區的訊息傳遞工作。很有可能就是藉著這些腦區的互動,使我們得以見樹又見林的感知並且記得我們所身處的世界及其風景。
摘要(英) The binding problem refers to the question of how multiple and different kinds of distributed information can be integrated in parallel to a unitary representation, such as an intact object, coherent perception, or even a memory episode. Beyond perception, the binding problem persists when one has to maintain such coherent representation of the world in short-term or long-term memory. The present study focuses on the neural oscillatory mechanism behind the binding processes that form and maintain color-shaped objects, which we refer to as Feature-Binding Visual Working Memory (Binding-VWM).
Although feature binding seems natural and automatic from our daily experiences, several previous studies have revealed that the processing of multi-featured object is not cost-free, both at the behavioral and neurophysiological level. Recent neuroimaging research has demonstrated that both the left temporal regions and the parietal cortex are involved specifically during the binding maintenance period. This is in line with several previous studies suggesting that the parietal region seems to play a vital role in visual grouping and binding-VWM. In addition, several electrophysiological studies have provided evidence showing that gamma frequency oscillation is related to WM load and is also relevant to feature binding and perception of coherent visual patterns. This motivates the hypothesis that feature binding in VWM may be mediated by the communication between temporal and parietal regions via gamma oscillations. Parietal regions here may provide the ‘glue’ that continuously maintain these bound features together even when objects are no longer in view. Causal evidence of how these brain regions operate together in storing multiple features of an object in VWM, however, has not been established with the use of correlational approaches. To this end, here we adopt gamma-frequency transcranial alternating current stimulation (tACS) to modulate the oscillatory signals between the left temporal and parietal cortices simultaneously to test the causality between their oscillatory pattern and binding-VWM performance.
In Experiment 1, the results confirmed previous research indicating the demanding nature of binding in VWM. In Experiment 2 there was a significant interaction between task condition (shape only vs. binding) and stimulation condition (out-phase gamma stimulation vs. sham), which was driven by the specific improvement via tACS in the binding condition but not in the sham condition. It is worth noting that the modulation effect was consistent across the on-line and off-line periods, suggesting that a carryover tACS effect was present even when stimulation stopped. The findings support the hypothesis that binding-VWM is established by the crosstalk between left parietal and temporal regions, in which gamma oscillation is a critical component. Moreover, our data demonstrate that the d’ profile of this modulation is not homogenous, but interacts with preexisting individual differences, where out-phase gamma tACS improved only low-performers’ memory. In Experiment 3 we applied in-phase gamma tACS over the same brain regions as Experiment2, but found no effect of tACS in both the single-feature and binding condition across low- and high-performers. These results suggest that the modulation effect from Experiment 2 is not a general effect of gamma tACS.
Taken together, our study showed that binding-VWM is demanding, but the low-performers can benefit significantly from out-phase gamma tACS over the left temporal and parietal regions, suggesting a possible mechanism of information transmission between these regions. It is likely that such neural interaction is what enables us to perceive and remember both the individual tree and the entire forest.
關鍵字(中) ★ 跨顱交流電刺激
★ 特徵連結視覺工作記憶
★ 頂葉
★ 顳葉
關鍵字(英) ★ transcranial alternating current stimulation
★ binding-visual working memory
★ parietal cortex
★ temporal cortex
論文目次 Table of Contents
Chapter 1: Introduction - 1 -
1.1 Visual working memory for features and conjunctions - 2 -
1.1.1 Behavioral Studies - 4 -
1.1.2 Images Studies - 11 -
1.1.3 Electroencephalography Studies - 21 -
1.2 Transcranial alternating current stimulation - 25 -
1.3 Summary and Aims - 32 -
Chapter 2: Experiment (1a) & Experiment (1b) - 34 -
2.1 Experiment (1a) - 35 -
2.1.1 Experiment (1a) method - 35 -
2.1.1.1 Experiment (1a) Participants - 35 -
2.1.1.2 Experiment (1a) Design - 35 -
2.1.1.3 Experiment (1a) Statistical Analysis - 37 -
2.1.2 Experiment (1a) Results - 39 -
2.2 Experiment (1b) - 40 -
2.2.1 Experiment (1b) method - 40 -
2.2.1.1 Experiment (1b) Participants - 40 -
2.2.1.2 Experiment (1b) Design - 40 -
2.2.1.3 Experiment (1b) Statistical Analysis - 42 -
2.2.2 Experiment (1b) Results - 42 -
2.3 Discussion - 43 -
Chapter 3: Experiment 2 - 46 -
3.1 Method - 47 -
3.1.1 Participants - 47 -
3.1.2 tACS Protocol - 47 -
3.1.3 Experimental Design - 48 -
3.2 Results - 49 -
3.3 Discussion - 54 -
Chapter 4: Experiment 3 - 58 -
4.1 Method - 58 -
4.1.1 Participants - 58 -
4.1.2 tACS Protocol - 59 -
4.1.3 Experimental Design - 59 -
4.2 Results - 60 -
4.3 Discussion - 64 -
Chapter 5: General discussion - 66 -
5.1 Experimental findings - 66 -
5.2 Future direction - 70 -
Reference - 74 -


參考文獻 Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2006). Is the binding of visual features in working memory resource-demanding? Journal of Experimental Psychology: General, 135(2), 298.
Allen, R. J., Hitch, G. J., & Baddeley, A. D. (2009). Cross-modal binding and working memory. Visual Cognition, 17(1-2), 83-102.
Allen, R. J., Hitch, G. J., Mate, J., & Baddeley, A. D. (2012). Feature binding and attention in working memory: A resolution of previous contradictory findings. The Quarterly Journal of Experimental Psychology, 65(12), 2369-2383.
Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological science, 15(2), 106-111.
Axmacher, N., Henseler, M. M., Jensen, O., Weinreich, I., Elger, C. E., & Fell, J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences, 107(7), 3228-3233.
Baddeley, A. D. (1986). Working memory. New York: Oxford Univ. Press.
Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends in cognitive sciences, 4(11), 417-423.
Baddeley, A. D., Allen, R. J., & Hitch, G. J. (2011). Binding in visual working memory: The role of the episodic buffer. Neuropsychologia, 49(6), 1393-1400.
Baddeley, A. (2012). Working memory: theories, models, and controversies. Annual review of psychology, 63, 1-29.
Baldauf, D., & Desimone, R. (2014). Neural Mechanisms of Object-Based Attention. Science, 344(6182), 424-427.
Beck, D. M., Muggleton, N., Walsh, V., & Lavie, N. (2006). Right parietal cortex plays a critical role in change blindness. Cerebral Cortex, 16(5), 712-717.
Benchenane, K., Peyrache, A., Khamassi, M., Tierney, P. L., Gioanni, Y., Battaglia, F. P., & Wiener, S. I. (2010). Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron, 66(6), 921-936.
Bosman, C. A., Schoffelen, J. M., Brunet, N., Oostenveld, R., Bastos, A. M., Womelsdorf, T., ... & Fries, P. (2012). Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron, 75(5), 875-888.
Brady, T. F., & Alvarez, G. A. (2011). Hierarchical encoding in visual working memory ensemble statistics bias memory for individual items. Psychological Science.
Brady, T. F., Konkle, T., & Alvarez, G. A. (2009). Compression in visual working memory: using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General, 138(4), 487.
Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). A review of visual memory capacity: Beyond individual items and toward structured representations. Journal of vision, 11(5), 4.
Brady, T. F., & Tenenbaum, J. B. (2013). A probabilistic model of visual working memory: Incorporating higher order regularities into working memory capacity estimates. Psychological review, 120(1), 85.
Brockmole, J. R., Parra, M. A., Della Sala, S., & Logie, R. H. (2008). Do binding deficits account for age-related decline in visual working memory?.Psychonomic Bulletin & Review, 15(3), 543-547.
Buschman, T. J., Denovellis, E. L., Diogo, C., Bullock, D., & Miller, E. K. (2012). Synchronous oscillatory neural ensembles for rules in the prefrontal cortex. Neuron, 76(4), 838-846.
Chan, C. Y., & Nicholson, C. (1986). Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. The Journal of physiology, 371(1), 89-114.
Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task.
Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M., Drury, H. A., ... & Shulman, G. L. (1998). A common network of functional areas for attention and eye movements. Neuron, 21(4), 761-773.
Corbetta, M., Miezin, F. M., Shulman, G. L., & Petersen, S. E. (1993). A PET study of visuospatial attention. Journal of Neuroscience, 13, 1202-1202.
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–185.
Cowan, N., Elliott, E. M., Scott Saults, J., Morey, C. C., Mattox, S., Hismjatullina, A., & Conway, A. R. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive psychology, 51(1), 42-100.
Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory. Nature, 386(6625), 608-611.
Curtis, C. E., & D′Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in cognitive sciences, 7(9), 415-423.
Deans, J. K., Powell, A. D., & Jefferys, J. G. (2007). Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. The Journal of physiology,583(2), 555-565.
Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Sciences, 93(24), 13494-13499.
Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., & Reitboeck, H. J. (1988). Coherent oscillations: A mechanism of feature linking in the visual cortex?. Biological cybernetics, 60(2), 121-130.
Eng, H. Y., Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin & Review, 12(6), 1127-1133.
Engel, A. K., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in cognitive sciences, 5(1), 16-25.
Esterman, M., Verstynen, T., & Robertson, L. C. (2007). Attenuating illusory binding with TMS of the right parietal cortex. Neuroimage, 35(3), 1247-1255.
Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12(2), 105-118.
Fougnie, D., Asplund, C. L., & Marois, R. (2010). What are the units of storage in visual working memory? Journal of Vision, 10(12), 27.
Gajewski, D. A., & Brockmole, J. R. (2006). Feature bindings endure without attention: Evidence from an explicit recall task. Psychonomic Bulletin & Review, 13(4), 581-587.
Gray, C. M., König, P., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338(6213), 334-337.
Gregoriou, G. G., Gotts, S. J., Zhou, H., & Desimone, R. (2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. science, 324(5931), 1207-1210.
Havenith, M. N., Yu, S., Biederlack, J., Chen, N. H., Singer, W., & Nikolić, D. (2011). Synchrony makes neurons fire in sequence, and stimulus properties determine who is ahead. The Journal of Neuroscience, 31(23), 8570-8584.
Hebb, D. O. (2002). The organization of behavior: A neuropsychological theory. Psychology Press.
Helfrich, R. F., Schneider, T. R., Rach, S., Trautmann-Lengsfeld, S. A., Engel, A. K., & Herrmann, C. S. (2014). Entrainment of brain oscillations by transcranial alternating current stimulation. Current Biology, 24(3), 333-339.
Holz, E. M., Glennon, M., Prendergast, K., & Sauseng, P. (2010). Theta–gamma phase synchronization during memory matching in visual working memory. Neuroimage, 52(1), 326-335.
Honkanen, R., Rouhinen, S., Wang, S. H., Palva, J. M., & Palva, S. (2014). Gamma Oscillations Underlie the Maintenance of Feature-Specific Information and the Contents of Visual Working Memory. Cerebral Cortex, bhu263.
Howard, M. W., Rizzuto, D. S., Caplan, J. B., Madsen, J. R., Lisman, J., Aschenbrenner-Scheibe, R., ... & Kahana, M. J. (2003). Gamma oscillations correlate with working memory load in humans. Cerebral cortex, 13(12), 1369-1374.
Irwin, D. E., & Andrews, R. V. (1996). Integration and accumulation of information across saccadic eye movements. Attention and performance XVI: Information integration in perception and communication, 16, 125-155.
Jaušovec, N., & Jaušovec, K. (2014). Increasing working memory capacity with theta transcranial alternating current stimulation (tACS). Biological psychology, 96, 42-47.
Jasper, H. H. (1958). The ten twenty electrode system of the international federation. Electroencephalography and clinical neurophysiology, 10, 371-375.
Jensen, O., and Lisman, J.E. (1998). An oscillatory short-term memory buffer model can account for data on the Sternberg task. J. Neurosci. 18, 10688–10699.
Jones, M. W., & Wilson, M. A. (2005). Theta rhythms coordinate hippocampal–prefrontal interactions in a spatial memory task. PLoS biology, 3(12), e402.
Köhler, S., Kapur, S., Moscovitch, M., Winocur, G., & Houle, S. (1995). Dissociation of pathways for object and spatial vision: a PET study in humans.Neuroreport, 6(14), 1865-1868.
Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive psychology, 24(2), 175-219.
Kamiński, J., Brzezicka, A., & Wróbel, A. (2011). Short-term memory capacity (7±2) predicted by theta to gamma cycle length ratio. Neurobiology of learning and memory, 95(1), 19-23.
Kanai, R., Chaieb, L., Antal, A., Walsh, V., & Paulus, W. (2008). Frequency-dependent electrical stimulation of the visual cortex. Current Biology, 18(23), 1839-1843.
Keil, A., Müller, M. M., Ray, W. J., Gruber, T., & Elbert, T. (1999). Human gamma band activity and perception of a gestalt. The Journal of neuroscience,19(16), 7152-7161.
Lisman, J. E., & Idiart, M. A. (1995). Storage of 7+/-2 short-term memories in oscillatory subcycles. Science, 267(5203), 1512-1515.
Logie, R. H., Brockmole, J. R., & Jaswal, S. (2011). Feature binding in visual short-term memory is unaffected by task-irrelevant changes of location, shape, and color. Memory & cognition, 39(1), 24-36.
Logie, R. H., Brockmole, J. R., & Vandenbroucke, A. R. (2009). Bound feature combinations in visual short-term memory are fragile but influence long-term learning. Visual Cognition, 17(1-2), 160-179.
Lutzenberger, W., Pulvermüller, F., Elbert, T., & Birbaumer, N. (1995). Visual stimulation alters local 40-Hz responses in humans: an EEG-study. Neuroscience letters, 183(1), 39-42.
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281.
Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in cognitive sciences, 17(8), 391-400.
Marshall, L., Helgadóttir, H., Mölle, M., & Born, J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature, 444(7119), 610-613.
Marshall, L., Mölle, M., Hallschmid, M., & Born, J. (2004). Transcranial direct current stimulation during sleep improves declarative memory. The Journal of neuroscience, 24(44), 9985-9992.
Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. The Journal of Neuroscience, 16(16), 5154-5167.
Mormann, F., Fell, J., Axmacher, N., Weber, B., Lehnertz, K., Elger, C.E., and Ferna´ ndez, G. (2005). Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus, 15, 890–900.
Müller, M. M., Bosch, J., Elbert, T., Kreiter, A., Sosa, M. V., Sosa, P. V., & Rockstroh, B. (1996). Visually induced gamma-band responses in human electroencephalographic activity—a link to animal studies. Experimental Brain Research, 112(1), 96-102.
Nobre, A. C., Sebestyen, G. N., Gitelman, D. R., Mesulam, M. M., Frackowiak, R. S., & Frith, C. D. (1997). Functional localization of the system for visuospatial attention using positron emission tomography. Brain, 120(3), 515-533.
Neuling, T., Rach, S., & Herrmann, C. S. (2013). Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Frontiers in human neuroscience, 7.
Olson, I. R., & Jiang, Y. (2002). Is visual short-term memory object based? Rejection of the “strong-object” hypothesis. Perception & Psychophysics,64(7), 1055-1067.
Palva, J. M., Monto, S., Kulashekhar, S., & Palva, S. (2010). Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proceedings of the National Academy of Sciences, 107(16), 7580-7585.
Parra, M. A., Abrahams, S., Fabi, K., Logie, R., Luzzi, S., & Della Sala, S. (2009a). Short-term memory binding deficits in Alzheimer′s disease. Brain, awp036.
Parra, M. A., Abrahams, S., Logie, R. H., Méndez, L. G., Lopera, F., & Della Sala, S. (2010). Visual short-term memory binding deficits in familial Alzheimer’s disease. Brain, 133(9), 2702-2713.
Parra, M. A., Abrahams, S., Logie, R. H., & Sala, S. D. (2009b). Age and binding within-dimension features in visual short-term memory. Neuroscience letters, 449(1), 1-5.
Parra, M. A., Della Sala, S., Logie, R. H., & Morcom, A. M. (2014). Neural correlates of shape–color binding in visual working memory. Neuropsychologia,52, 27-36.
Palva, S., Kulashekhar, S., Hämäläinen, M., & Palva, J. M. (2011). Localization of cortical phase and amplitude dynamics during visual working memory encoding and retention. The Journal of Neuroscience, 31(13), 5013-5025.
Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsáki, G. (2008). Internally generated cell assembly sequences in the rat hippocampus. Science,321(5894), 1322-1327.
Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P., & Andersen, R. A. (2002). Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature neuroscience, 5(8), 805-811.
Pessoa, L., Gutierrez, E., Bandettini, P. A., & Ungerleider, L. G. (2002). Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron, 35(5), 975-987.
Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Perception & Psychophysics, 16(2), 283-290.
Plihal, W., & Born, J. (1997). Effects of early and late nocturnal sleep on declarative and procedural memory. Journal of Cognitive Neuroscience, 9(4), 534-547.
Polanía, R., Nitsche, M. A., Korman, C., Batsikadze, G., & Paulus, W. (2012). The importance of timing in segregated theta phase-coupling for cognitive performance. Current Biology, 22(14), 1314-1318.
Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical neurophysiology, 118(10), 2128-2148.
Reato, D., Rahman, A., Bikson, M., & Parra, L. C. (2013). Effects of weak transcranial alternating current stimulation on brain activity—a review of known mechanisms from animal studies. Frontiers in human neuroscience, 7.
Rizzuto, D.S., Madsen, J.R., Bromfield, E.B., Schulze-Bonhage, A., and Kahana, M.J. (2006). Human neocortical oscillations exhibit theta phase differences between encoding and retrieval. Neuroimage 31, 1352–1358.
Robertson, L. C., & Treisman, A. (1995). Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions. Science, 269(5225), 853-855.
Rodriguez, E., George, N., Lachaux, J. P., Martinerie, J., Renault, B., & Varela, F. J. (1999). Perception′s shadow: long-distance synchronization of human brain activity. Nature, 397(6718), 430-433.
Rose, M., & Büchel, C. (2005). Neural coupling binds visual tokens to moving stimuli. The Journal of neuroscience, 25(44), 10101-10104.
Rose, M., Sommer, T., & Büchel, C. (2006). Integration of local features to a global percept by neural coupling. Cerebral Cortex, 16(10), 1522-1528.
Rouder, J. N., Morey, R. D., Cowan, N., Zwilling, C. E., Morey, C. C., & Pratte, M. S. (2008). An assessment of fixed-capacity models of visual working memory. Proceedings of the National Academy of Sciences, 105(16), 5975-5979.
Roux, F., & Uhlhaas, P. J. (2014). Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information? Trends in cognitive sciences, 18(1), 16-25.
Roux, F., Wibral, M., Mohr, H. M., Singer, W., & Uhlhaas, P. J. (2012). Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. The Journal of neuroscience,32(36), 12411-12420.
Salazar, R. F., Dotson, N. M., Bressler, S. L., & Gray, C. M. (2012). Content-specific fronto-parietal synchronization during visual working memory. Science,338(6110), 1097-1100.
Sela, T., Kilim, A., & Lavidor, M. (2012). Transcranial alternating current stimulation increases risk-taking behavior in the balloon analog risk task. Frontiers in neuroscience, 6.
Shafritz, K. M., Gore, J. C., & Marois, R. (2002). The role of the parietal cortex in visual feature binding. Proceedings of the National Academy of Sciences,99(16), 10917-10922.
Siegel, M., Warden, M. R., & Miller, E. K. (2009). Phase-dependent neuronal coding of objects in short-term memory. Proceedings of the National Academy of Sciences, 106(50), 21341-21346.
Suchow, J. W., Brady, T. F., Fougnie, D., & Alvarez, G. A. (2013). Modeling visual working memory with the MemToolbox. Journal of vision, 13(10), 9.
Smith, E. E., & Jonides, J. (1998). Neuroimaging analyses of human working memory. Proceedings of the National Academy of Sciences, 95(20), 12061-12068.
Sternberg, S. (1966). High-speed scanning in human memory. Science 153, 652–654.
Strüber, D., Rach, S., Trautmann-Lengsfeld, S. A., Engel, A. K., & Herrmann, C. S. (2014). Antiphasic 40 Hz oscillatory current stimulation affects bistable motion perception. Brain topography, 27(1), 158-171.
Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1996). Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. The Journal of Neuroscience, 16(13), 4240-4249.
Tallon-Baudry, C., Bertrand, O., Peronnet, F., & Pernier, J. (1998). Induced γ-band activity during the delay of a visual short-term memory task in humans.The Journal of neuroscience, 18(11), 4244-4254.
Todd, J. J., Fougnie, D., & Marois, R. (2005). Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness. Psychological Science, 16(12), 965-972.
Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428(6984), 751-754.
Tort, A. B., Komorowski, R. W., Manns, J. R., Kopell, N. J., & Eichenbaum, H. (2009). Theta–gamma coupling increases during the learning of item–context associations. Proceedings of the National Academy of Sciences, 106(49), 20942-20947.
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive psychology, 12(1), 97-136.
Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 459.
Treisman, A. (1998). Feature binding, attention and object perception. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1373), 1295-1306.
Treisman, A. (1999). Solutions to the binding problem: progress through controversy and convergence. Neuron, 24(1), 105-125.
Treisman, A. (2006). Object tokens, binding and visual memory. Handbook of binding and
memory. Oxford: Oxford University Press.
Treisman, A., & Zhang, W. (2006). Location and binding in visual working memory. Memory & cognition, 34(8), 1704-1719.
Tseng, P., Hsu, T. Y., Chang, C. F., Tzeng, O. J., Hung, D. L., Muggleton, N. G., ... & Juan, C. H. (2012). Unleashing potential: transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. The Journal of Neuroscience, 32(31), 10554-10561.
Tseng, P., Hsu, T. Y., Muggleton, N. G., Tzeng, O. J., Hung, D. L., & Juan, C. H. (2010). Posterior parietal cortex mediates encoding and maintenance processes in change blindness. Neuropsychologia, 48(4), 1063-1070.
van Vugt, M. K., Schulze-Bonhage, A., Litt, B., Brandt, A., & Kahana, M. J. (2010). Hippocampal gamma oscillations increase with memory load. The journal of neuroscience, 30(7), 2694-2699.
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748-751.
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92.
Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131(1), 48.
Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4(12), 11.
Xu, Y. (2002). Limitations of object-based feature encoding in visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 28(2), 458.
Xu, Y., & Chun, M. M. (2005). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440(7080), 91-95.
Xu, Y. (2007). The role of the superior intraparietal sulcus in supporting visual short-term memory for multifeature objects. The Journal of Neuroscience,27(43), 11676-11686.
Xu, Y., & Chun, M. M. (2007). Visual grouping in human parietal cortex. Proceedings of the national academy of sciences, 104(47), 18766-18771.
Zaehle, T., Rach, S., & Herrmann, C. S. (2010). Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One, 5(11), e13766.

指導教授 阮啟弘(Chi-Hung Juan) 審核日期 2015-1-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明