博碩士論文 101235006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:35.175.191.72
姓名 駱建銘(Chien-Ming Lo)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 以非侵入式腦刺激探討左後側頂葉與情節記憶提取之因果關係
(Using noninvasive brain stimulation to examine the causal relationship between the left posterior parietal cortex and episodic memory retrieval)
相關論文
★ 意旁結合度、意旁表意透明度對中文閱讀的影響★ 以行為及事件相關電位探討中文雙字詞的記憶聯結錯誤
★ 項目指示遺忘效果的行為與事件相關電位研究★ 項目指示遺忘作業中記憶登錄及提取歷程的行為及事件相關腦電位研究
★ 以語意促發作業探討項目指示遺忘中線索對於記憶登錄歷程影響之行為及事件相關腦電位研究★ 特定與非特定來源記憶提取的行為及事件相關腦電位
★ 以行為及事件相關腦電位探討處理層次與聯結性登錄方式對記憶連結錯誤之影響★ 中文字詞辨識的語音運作單位
★ 由語意透明度所引發的再認記憶鏡像效應:行為與事件相關腦電位研究★ 登錄作業對於中文雙字詞語意透明度在再認記憶中所引發鏡像效應之影響:行為及事件相關腦電位實驗
★ 以事件相關腦電位探討細節性與概要性記憶的提取導向★ 以行為及事件相關腦電位實驗探討前瞻記憶線索出現機率對於前瞻干擾效果的影響
★ 以跨顱電刺激與事件相關腦電位探討左側後頂葉腦區於再認記憶中所扮演之角色★ 測驗表現回饋對測驗效應之調控的行為與事件相關腦電位研究
★ 中文假字形聲限制高低對於試誤與無誤學習之影響的行為與事件相關腦電位研究★ 情緒入碼情境對於記憶登錄與提取中的控制歷程之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 眾多功能性神經造影研究一致地發現,左後側頂葉(left posterior parietal cortex)在成功提取情節記憶(episodic memory)時會有活化的現象。然而,由於造影研究僅能針對觀察到的腦部活動及認知功能提供相關性的證據,左後側頂葉對於成功提取情節記憶時的活動並不代表左後側頂葉與記憶提取之間有因果關係。傳統上探腦部活動與認知功能是否具因果關聯性的方法是觀察特定腦區受損的病人是否也呈現相對應的認知缺損。早期神經心理學的研究甚少報告頂葉受損的病人出現情節記憶的缺損,而近期使用較敏感記憶測試方法的神經心理學實驗則發現頂葉受損的病人可能有輕微的記憶缺失。這些神經心理學的發現很明顯的並不支持情節記憶的提取需要左後側頂葉的參與。這種不一致的發現可能導因於神經心理學研究中腦傷病人受傷位置的變異,腦部其他區域功能補償,以及病人使用不同策略,以致沒有觀察到對應的認知功能減損。這些可能的問題可藉由使用非侵入式腦刺激研究方法避免,藉由暫時性的干擾某些特定腦區,觀察相對應的知功能表現是否發生不同。迄今為止有少數關於頂葉與情節記憶提取的非侵入式腦刺激方法研究,但這些研究因實驗設計的問題或是使用的記憶測試對於情節記憶不具足夠的敏感性,因此彼此之間的結果並不一致,對於左後頂葉與情節記憶提取之間的因果關係仍無定論。
由於能夠提取帶有情境訊息的清晰記憶(recollection)是情節記憶很重要的一個特點,本研究利用可以量化清晰記憶的來源記憶測驗(source memory task)作為成功提取情節記憶的指標,並使用經顱直流電刺激(transcranial direct current stimulation)與經顱磁刺激(transcranial magnetic stimulation)兩種非侵入式腦部刺激儀器探討左後頂葉的活動與情節記憶提取之間是否具有因果關係。實驗一探討在記憶提取的過程中以經顱電刺激影響左後側頂葉是否會對記憶表現有所影響。受試者被隨機分派至陽極組與陰極組並分別只會接受陽極或是陰極的電刺激,且在三天的實驗中分別進行三次來源記憶測驗。在這三次測驗中,受試者於記憶提取的過程中同時接受在左後側頂葉位置的電刺激、假性刺激(sham)、或主要動作皮質區(M1)的電刺激。實驗結果顯示,雖然陽極組上並沒有看到記憶表現因為電刺激有所改變,但來源記憶的正確率受到陰極在左後側頂葉位置的電刺激後顯著的降低,而再認記憶的表現不受影響,顯示出以陰極直流電減低左後側頂葉的神經活動干擾情節記憶的表現。實驗一的結果提供了支持左後側頂葉與情節記憶提取存在著因果關係的證據。由於神經造影的研究顯示左後側頂葉內的角迴(left angular gyrus)的活化似乎與提取出清晰記憶有很大的關聯,但是經顱直流電刺激的空間解析度較差,無法單獨刺激角迴這個區域而不影響其他可能與記憶提取相關的區域,實驗二因此使用能精確影響特定腦區的經顱磁刺激來探究左後側頂葉中的角迴是否在提取清晰記憶中扮演著重要的角色。實驗二利用抑制性的連續性高脈衝式經顱磁刺激(continuous theta burst stimulation)來影響角迴這個腦區。受試者會進行三次來源再認記憶測驗,並且會在三次提取階段前分別接受在角迴位置的刺激、假性刺激、或是頂點(vertex)刺激。實驗結果顯示,受試者不論是再認記憶表現或者是來源記憶表現都沒有受到於角迴的經顱磁刺激的影響。為了確認實驗二的結果並不是因為連續性高脈衝式經顱磁刺激的強度不足所致,實驗三召回實驗二的受試者,並使用先前的刺激參數與腦區坐標讓受試者接受角迴位置的刺激或假性刺激。受試者接受刺激後進行數字大小比較作業(magnitude comparison task)以及特徵聯結搜尋作業(conjunction search task)。選擇這兩個作業是因為在先前的研究發現對角迴進行干擾可以影響這兩個作業的表現。實驗三的結果顯示,相較於假性刺激,對角迴的刺激可以干擾以上兩個作業的表現,代表著實驗二所使用的刺激參數至少可以影響某些牽涉角迴的認知作業。
總結來說,實驗一提供了左後側頂葉與情節記憶提取有因果關係的支持證據,但是實驗二的結果並沒有證據顯示只影響角迴這個腦區可以對記憶提取的表現有所影響,而這個結果由實驗三看來可能不是低強度的刺激所導致。雖然在腦造影研究中角迴不斷的出現與提取清晰記憶相關的活化,但從實驗結果看來,角迴在情節記憶提取裡可能只扮演著非常輕微的角色。未來研究可能需要考慮個別定位提取清晰記憶時有高度活化的角迴坐標,以及文字與圖片刺激材料是否會活化不同的角迴區域來釐清角迴對於情節記憶提取的因果關係。
摘要(英) Activations in the left posterior parietal cortex (LPPC) have been consistently reported in functional neuroimaging studies of episodic memory retrieval. However, it remains unclear whether this area is causally related to episodic memory retrieval. The correlational nature of neuroimaging studies makes it difficult to assert a causal relation between the LPPC activity and episodic retrieval. Furthermore, patient studies give rise to inconsistent results with regards to whether parietal lesions result in memory deficits. There have been a few noninvasive brain stimulation studies addressing this issue but the results were not consistent, possibly due to the fact that their designs were not optimal.
A defining characteristic of episodic memory is recollection. Two experiments reported in this thesis hence employed a source memory task to index recollection and applied the noninvasive stimulation methods of transcranial direct-current stimulation (tDCS) and transcranial magnetic stimulation (TMS) to examine whether LPPC activity is causally related to episodic memory retrieval. In Experiment 1, twenty-four participants were randomly assigned to the anodal or the cathodal group and performed source memory tests on three separate days. During the retrieval phase, the participants received anodal or cathodal stimulation over the LPPC, sham on the LPPC, and stimulation on primary motor cortex (M1) as a control condition. The results indicated that source memory accuracy, but not old/new recognition performance, decreased significantly in the cathodal group when subjects received stimulation on the LPPC region compared with sham and M1 conditions. No such effect was found in the anodal group. The results of Experiment 1 supported the claim that the LPPC is causally related to episodic retrieval. In neuroimaging studies, the activation of the left angular gyrus (lAnG) within the LPPC was found to be associated with recollection process during retrieval, but the spatial resolution of tDCS was not able to stimulate such specific brain region without affecting adjacent regions. Hence, TMS, a more focal brain stimulation technique, was used in the second experiment. In Experiment 2, to further investigate the causal involvement of the lAnG in the recollection process, continuous theta burst stimulation (cTBS), which is an inhibitory repetitive TMS stimulation method, was employed. Twelve subjects performed a source memory task in which they had to make two source judgments. The cTBS was administered over the lAnG or vertex before the retrieval stage. The results showed no differences in the performances of both old/new recognition and source accuracy across the lAnG stimulation, sham, and vertex control conditions. In Experiment 3, to test whether the null results of Experiment 2 were due to insufficient cTBS intensity, eleven participants of Experiment 2 were recruited in Experiment 3. They received the cTBS with the same protocol used in Experiment 2 and then engaged in a magnitude comparison task and a visual conjunction search task. The results showed that performance in both tasks were lower after the cTBS over the lAnG relative to the sham condition, suggesting that the cTBS protocol used in Experiment 2 can influence at least some cognitive functions.
Taken together, the tDCS study provided supportive evidence that the LPPC is causally related to episodic retrieval, whereas the cTBS study failed to reveal the causal relationship between the lAnG and recollection process. The null results of the cTBS study most likely was not due to insufficient cTBS intensity, as Experiment 3 showed that conjunction search and magnitude comparison were modulated by cTBS of the same protocol. These results may imply that the role of the lAnG in episodic retrieval is subtle or secondary. Another possible implication is that the appropriate lAnG location that are highly correlated with recollection should be identified individually so that a more consistent result can be revealed. Future studies also need to consider if textual and pictorial stimuli activate different regions within the angular gyrus in order to further clarify the causal relationship between the lAnG and episodic retrieval.
關鍵字(中) ★ 情節記憶
★ 記憶提取
★ 經顱電刺激
★ 高脈沖式經顱磁刺激
關鍵字(英) ★ episodic memory
★ retrieval
★ tDCS
★ cTBS
論文目次 1. Introduction 1
1.2. Recognition memory 3
1.1.1. Single-process theory 4
1.1.2. Dual-process theory 5
1.2. Episodic memory 8
1.2.1. Remember/know procedure 9
1.2.2. Source memory task 11
2. Left posterior parietal cortex and episodic memory retrieval 13
2.1. The posterior parietal cortex 13
2.2. The posterior parietal cortex and episodic memory retrieval 15
2.2.1. ERP studies 16
2.2.2. Functional neuroimaging studies 19
2.2.3. Neuropsychological studies 25
2.2.4. Brain stimulation studies 28
3. Research Aims and General methods 31
3.1. Research aims 31
3.2. General method 32
3.2.1. Research paradigm 32
3.2.2. Transcranial direct current stimulation (tDCS) 34
3.2.3. Transcranial magnetic stimulation (TMS) 35
4. Experiment 1 39
1.1. Methods 40
1.2. Results 47
1.3. Discussion 56
5. Experiment 2 61
5.1. Methods 62
5.2. Results 72
5.3. Discussion 77
6. Experiment 3 80
6.1. Methods 81
6.2. Results 84
6.3. Discussion 87
7. General Discussion 90
7.1. Experimental findings 90
7.2. Future directions 97
Reference 99
參考文獻 Aggleton, J. P., & Brown, M. W. (1999). Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behavioral and brain sciences, 22(03), 425-444.
Ally, B. A., Simons, J. S., McKeever, J. D., Peers, P. V., & Budson, A. E. (2008). Parietal contributions to recollection: Electrophysiological evidence from aging and patients with parietal lesions. Neuropsychologia, 46(7), 1800-1812.
Atkinson, R. C., & Juola, J. F. (1974). Search and decision processes in recognition memory. WH Freeman.
Baddeley, A. (2000). The episodic buffer: a new component of working memory?. Trends in cognitive sciences, 4(11), 417-423.
Barker AT, Jalinous R & Freeston I. (1985). Non-invasive magnetic stimulation of the human motor cortex. Lancet, 1:1106-1107
Berryhill, M. E., Drowos, D. B., & Olson, I. R. (2009). Bilateral parietal cortex damage does not impair associative memory for paired stimuli. Cognitive neuropsychology, 26(7), 606-619.
Berryhill, M. E., Phuong, L., Picasso, L., Cabeza, R., & Olson, I. R. (2007). Parietal lobe and episodic memory: bilateral damage causes impaired free recall of autobiographical memory. The Journal of Neuroscience, 27(52), 14415-14423.
Boggio, P. S., Rocha, R. R., da Silva, M. T., & Fregni, F. (2008). Differential modulatory effects of transcranial direct current stimulation on a facial expression go-no-go task in males and females. Neuroscience letters, 447(2), 101-105.
Brodeur, M. B., Dionne-Dostie, E., Montreuil, T., & Lepage, M. (2010). The Bank of Standardized Stimuli (BOSS), a new set of 480 normative photos of objects to be used as visual stimuli in cognitive research. PloS one, 5(5), e10773.
Burianová, H., Ciaramelli, E., Grady, C. L., & Moscovitch, M. (2012). Top-down and bottom-up attention-to-memory: mapping functional connectivity in two distinct networks that underlie cued and uncued recognition memory. Neuroimage, 63(3), 1343-1352.
Cabeza, R. (2008). Role of parietal regions in episodic memory retrieval: the dual attentional processes hypothesis. Neuropsychologia, 46(7), 1813-1827.
Cabeza, R., Ciaramelli, E., & Moscovitch, M. (2012). Cognitive contributions of the ventral parietal cortex: an integrative theoretical account. Trends in cognitive sciences, 16(6), 338-352.
Cabeza, R., Ciaramelli, E., Olson, I. R., & Moscovitch, M. (2008). The parietal cortex and episodic memory: an attentional account. Nature Reviews Neuroscience, 9(8), 613-625.
Cabeza, R., Mazuz, Y. S., Stokes, J., Kragel, J. E., Woldorff, M. G., Ciaramelli, E., ... & Moscovitch, M. (2011). Overlapping parietal activity in memory and perception: evidence for the attention to memory model. Journal of cognitive neuroscience, 23(11), 3209-3217.
Cárdenas-Morales, L., Nowak, D. A., Kammer, T., Wolf, R. C., & Schönfeldt-Lecuona, C. (2010). Mechanisms and applications of theta-burst rTMS on the human motor cortex. Brain topography, 22(4), 294-306.
Chen, R., Classen, J., Gerloff, C., Celnik, P., Wassermann, E. M., Hallett, M., & Cohen, L. G. (1997). Depression of motor cortex excitability by low‐frequency transcranial magnetic stimulation. Neurology, 48(5), 1398-1403.
Ciaramelli, E., Grady, C. L., & Moscovitch, M. (2008). Top-down and bottom-up attention to memory: A hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia, 46(7), 1828-1851.
Ciaramelli, E., Grady, C., Levine, B., Ween, J., & Moscovitch, M. (2010). Top-down and bottom-up attention to memory are dissociated in posterior parietal cortex: neuroimaging and neuropsychological evidence. The Journal of Neuroscience, 30(14), 4943-4956.
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature reviews neuroscience, 3(3), 201-215.
Curran, T. (2000). Brain potentials of recollection and familiarity. Memory & Cognition, 28(6), 923-938.
Davidson, P. S., Anaki, D., Ciaramelli, E., Cohn, M., Kim, A. S., Murphy, K. J., ... & Levine, B. (2008). Does lateral parietal cortex support episodic memory?: Evidence from focal lesion patients. Neuropsychologia, 46(7), 1743-1755.
Dayan, E., Censor, N., Buch, E. R., Sandrini, M., & Cohen, L. G. (2013). Noninvasive brain stimulation: from physiology to network dynamics and back. Nature neuroscience, 16(7), 838-844.
Di Lazzaro, V., Pilato, F., Dileone, M., Profice, P., Oliviero, A., Mazzone, P., ... & Rothwell, J. C. (2008). The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. The Journal of physiology, 586(16), 3871-3879.
Donaldson, D., Petersen, S. E., Ollinger, J. M., & Buckner, R. (2001). Dissociating state and item components of recognition memory using fMRI. NeuroImage, 13(1), 129-142.
Downes, J. J., Mayes, A. R., MacDonald, C., & Hunkin, N. M. (2002). Temporal order memory in patients with Korsakoff’s syndrome and medial temporal amnesia. Neuropsychologia, 40(7), 853-861.
Drowos, D. B., Berryhill, M., André, J. M., & Olson, I. R. (2010). True memory, false memory, and subjective recollection deficits after focal parietal lobe lesions. Neuropsychology, 24(4), 465.
Duarte, A., Ranganath, C., Winward, L., Hayward, D., & Knight, R. T. (2004). Dissociable neural correlates for familiarity and recollection during the encoding and retrieval of pictures. Cognitive Brain Research, 18, 255-272.
Düzel, E., Yonelinas, A. P., Mangun, G. R., Heinze, H. J., & Tulving, E. (1997). Event-related brain potential correlates of two states of conscious awareness in memory. Proceedings of the National Academy of Sciences, 94(11), 5973-5978.
Feredoes, E., & Postle, B. R. (2007). Localization of load sensitivity of working memory storage: quantitatively and qualitatively discrepant results yielded by single-subject and group-averaged approaches to fMRI group analysis. Neuroimage, 35(2), 881-903.
Feredoes, E., Tononi, G., & Postle, B. R. (2007). The neural bases of the short-term storage of verbal information are anatomically variable across individuals. The Journal of Neuroscience, 27(41), 11003-11008.
Fregni, F., Liebetanz, D., Monte-Silva, K. K., Oliveira, M. B., Santos, A. A., Nitsche, M. A., ... & Guedes, R. C. (2007). Effects of transcranial direct current stimulation coupled with repetitive electrical stimulation on cortical spreading depression. Experimental neurology, 204(1), 462-466.
Gardiner, J. M. (1988). Functional aspects of recollective experience. Memory & Cognition, 16(4), 309-313.
Gardiner, J. M., & Richardson-Klavehn, A. (2000). Remembering and knowing.
Göbel, S., Walsh, V., & Rushworth, M. F. (2001). The mental number line and the human angular gyrus, Neuroimage, 14(6), 1278-1289.
Hallett, M. (2007). Transcranial magnetic stimulation: a primer. Neuron, 55(2), 187-199.
Henson, R. N., Rugg, M. D., Shallice, T., Josephs, O., & Dolan, R. J. (1999). Recollection and familiarity in recognition memory: an event-related functional magnetic resonance imaging study. Journal of Neuroscience, 19(10), 3962-3972.
Herron, J. E., Henson, R. N., & Rugg, M. D. (2004). Probability effects on the neural correlates of retrieval success: An fMRI study. Neuroimage, 21, 302–310.
Huang, C.R., & Chen, K. J. (1998). Academia Sinica balanced corpus of Modern Chinese. Taipei: Academia Sinica
Huang, Y. Z., Chen, R. S., Rothwell, J. C., & Wen, H. Y. (2007). The after-effect of human theta burst stimulation is NMDA receptor dependent. Clinical Neurophysiology, 118(5), 1028-1032.
Huang, Y. Z., Edwards, M. J., Rounis, E., Bhatia, K. P., & Rothwell, J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45(2), 201-206.
Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W. H., Gerloff, C., & Cohen, L. G. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 128(Pt 3), 490-499.
Huang, Y. Z., Rothwell, J. C., Edwards, M. J., & Chen, R. S. (2008). Effect of physiological activity on an NMDA-dependent form of cortical plasticity in human. Cerebral Cortex, 18(3), 563-570.
Huang, Y. Z., Rothwell, J. C., Chen, R. S., Lu, C. S., & Chuang, W. L. (2011). The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clinical Neurophysiology, 122(5), 1011-1018.
Hutchinson, J. B., Uncapher, M. R., & Wagner, A. D. (2009). Posterior parietal cortex and episodic retrieval: convergent and divergent effects of attention and memory. Learning & Memory, 16(6), 343-356.
Hutchinson, J. B., Uncapher, M. R., Weiner, K. S., Bressler, D. W., Silver, M. A., Preston, A. R., & Wagner, A. D. (2012). Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval. Cerebral Cortex, bhs278.
Iidaka, T., Matsumoto, A., Nogawa, J., Yamamoto, Y., & Sadato, N. (2006). Frontoparietal network involved in successful retrieval from episodic memory. Spatial and temporal analyses using fMRI and ERP. Cerebral Cortex, 16(9), 1349-1360.
Jacobson, L., Koslowsky, M., & Lavidor, M. (2012). tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Experimental Brain Research, 216(1), 1-10.
Jacoby, L. L., & Dallas, M. (1981). On the relationship between autobiographical memory and perceptual learning. Journal of Experimental Psychology: General, 110(3), 306.
Jasper, H. H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 10, 370-375.
Johnson, J. D., Suzuki, M., & Rugg, M. D. (2013). Recollection, familiarity, and content-sensitivity in lateral parietal cortex: a high-resolution fMRI study. Frontiers in human neuroscience, 7.
Kahn, I., Davachi, L., & Wagner, A. D. (2004). Functional–neuroanatomical correlates of recollection: Implications for models of recognition memory. Journal of Neuroscience, 24, 4172–4180.
Kim, H. (2010). Dissociating the roles of the default-mode, dorsal, and ventral networks in episodic memory retrieval. Neuroimage, 50(4), 1648-1657.
Kim, H., & Cabeza, R. (2007). Trusting our memories: dissociating the neural correlates of confidence in veridical versus illusory memories. The Journal of Neuroscience, 27(45), 12190-12197.
Konishi, S., Wheeler, M. E., Donaldson, D. I., & Buckner, R. L. (2000). Neural correlates of episodic retrieval success. NeuroImage, 12(3), 276-286.
Kopelman, M. D., Bright, P., Buckman, J., Fradera, A., Yoshimasu, H., Jacobson, C., & Colchester, A. C. (2007). Recall and recognition memory in amnesia: patients with hippocampal, medial temporal, temporal lobe or frontal pathology. Neuropsychologia, 45(6), 1232-1246.
Kopelman, M. D., & Stanhope, N. (1998). Recall and recognition memory in patients with focal frontal, temporal lobe and diencephalic lesions. Neuropsychologia, 36(8), 785-796.
Lang, N., Siebner, H. R., Ernst, D., Nitsche, M. A., Paulus, W., Lemon, R. N., & Rothwell, J. C. (2004). Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biological psychiatry, 56(9), 634-639.
Mandler, G. (1980). Recognizing: The judgment of previous occurrence. Psychological review, 87(3), 252.
Manenti, R., Tettamanti,M., Cotelli,M., Miniussi,C.,& Cappa,S.F.(2010).The neural bases of word encoding and retrieval: a fMRI-guided transcranial magnetic stimulation study. Brain Topography, 22, 318–332.
Meinzer, M., Antonenko, D., Lindenberg, R., Hetzer, S., Ulm, L., Avirame, K., ... & Flöel, A. (2012). Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation. The Journal of Neuroscience, 32(5), 1859-1866.
McDermott, K. B., Jones, T. C., Petersen, S. E., Lageman, S. K., & Roediger, H. L., III. (2000). Retrieval success is accompanied by enhanced activation in anterior prefrontal cortex during recognition memory: An event-related fMRI study. Journal of Cognitive Neuroscience, 12, 965–976.
Mitchell, K. J., & Johnson, M. K. (2009). Source monitoring 15 years later: what have we learned from fMRI about the neural mechanisms of source memory?. Psychological bulletin, 135(4), 638.
Nelson, S. M., Cohen, A. L., Power, J. D., Wig, G. S., Miezin, F. M., Wheeler, M. E., ... & Petersen, S. E. (2010). A parcellation scheme for human left lateral parietal cortex. Neuron, 67(1), 156-170.
Nelson, S. M., McDermott, K. B., Wig, G. S., Schlaggar, B. L., & Petersen, S. E. (2013). The critical roles of localization and physiology for understanding parietal contributions to memory retrieval. The Neuroscientist, 19(6), 578-591.
Nitsche, M. A., Müller-Dahlhaus, F., Paulus, W., & Ziemann, U. (2012). The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs. The Journal of physiology, 590(19), 4641-4662.
Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of physiology, 527(3), 633-639.
Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899-1901.
Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., ... & Paulus, W. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of physiology, 553(1), 293-301.
Nitsche, M. A., Seeber, A., Frommann, K., Klein, C. C., Rochford, C., Nitsche, M. S., ... & Tergau, F. (2005). Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. The Journal of physiology, 568(1), 291-303.
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97-113.
Olson, I. R., & Berryhill, M. (2009). Some surprising findings on the involvement of the parietal lobe in human memory. Neurobiology of learning and memory, 91(2), 155-165.
Rajaram, S. (1993). Remembering and knowing: Two means of access to the personal past. Memory & Cognition, 21(1), 89-102.
Pascual-Leone, A., Valls-Solé, J., Wassermann, E. M., & Hallett, M. (1994). Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain, 117(4), 847-858.
Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., ... & Krakauer, J. W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences, 106(5), 1590-1595.
Perfect, T. J. (1996). Does context discriminate recollection from familiarity in recognition memory?. The Quarterly Journal of Experimental Psychology: Section A, 49(3), 797-813.
Polanía, R., Nitsche, M. A., & Paulus, W. (2011). Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Human brain mapping, 32(8), 1236-1249.
Rossi, S., Pasqualetti, P., Zito. G., Vecchio, F., Cappa, S. F., & Rossini, P. M. (2006). Prefrontal and parietal cortex in human episodic memory: an interference study by repetitive transcranial magnetic stimulation. The European Journal of Neuroscience, 23, 793-800.
Rugg, M.D. (1995). Event-related potential studies of human memory. In M.S. Gazzaniga (Ed.), The Cognitive Neurosciences. MIT Press
Rugg, M. D., & Curran, T. (2007). Event-related potentials and recognition memory. Trends in cognitive sciences, 11(6), 251-257.
Rugg, M. D., Mark, R. E., Walla, P., Schloerscheidt, A. M., Birch, C. S., & Allan, K. (1998). Dissociation of the neural correlates of implicit and explicit memory. Nature, 392(6676), 595-598.
Rugg, M. D., & Yonelinas, A. P. (2003). Human recognition memory: a cognitive neuroscience perspective. Trends in cognitive sciences, 7(7), 313-319.
Rusconi, E., Walsh, V., & Butterworth, B. (2005). Dexterity with numbers: rTMS over left angular gyrus disrupts finger gnosis and number processing. Neuropsychologia, 43(11), 1609-1624.
Rushworth, M. F. S., Behrens, T. E. J., & Johansen-Berg, H. (2006). Connection patterns distinguish 3 regions of human parietal cortex. Cerebral Cortex, 16(10), 1418-1430.
Rutishauser, U., Mamelak, A. N., & Schuman, E. M. (2006). Single-trial learning of novel stimuli by individual neurons of the human hippocampus-amygdala complex. Neuron, 49(6), 805-813.
Sack, A. T., Kadosh, R. C., Schuhmann, T., Moerel, M., Walsh, V., & Goebel, R. (2009). Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. Journal of Cognitive Neuroscience, 21(2), 207-221.
Sandrini, M., Rossini, P. M., & Miniussi, C. (2004). The differential involvement of inferior parietal lobule in number comparison: a rTMS study. Neuropsychologia, 42(14), 1902-1909.
Sandrini, M., Umiltà, C., & Rusconi, E. (2011). The use of transcranial magnetic stimulation in cognitive neuroscience: a new synthesis of methodological issues. Neuroscience & Biobehavioral Reviews, 35(3), 516-536.
Schmahmann, J. D., Pandya, D. N., Wang, R., Dai, G., D′Arceuil, H. E., de Crespigny, A. J., & Wedeen, V. J. (2007). Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain, 130(3), 630-653.
Schoo, L. A., van Zandvoort, M. J. E., Biessels, G. J., Kappelle, L. J., Postma, A., & de Haan, E. H. F. (2011). The posterior parietal paradox: Why do functional magnetic resonance imaging and lesion studies on episodic memory produce conflicting results?. Journal of neuropsychology, 5(1), 15-38.
Seghier, M. L. (2013). The angular gyrus multiple functions and multiple subdivisions. The Neuroscientist, 19(1), 43-61.
Sestieri, C., Capotosto, P., Tosoni, A., Luca Romani, G., & Corbetta, M. (2013). Interference with episodic memory retrieval following transcranial stimulation of the inferior but not the superior parietal lobule. Neuropsychologia, 51(5), 900-906.
Sestieri, C., Shulman, G. L., & Corbetta, M. (2010). Attention to memory and the environment: functional specialization and dynamic competition in human posterior parietal cortex. The Journal of Neuroscience, 30(25), 8445-8456.
Shannon, B. J., & Buckner, R. L. (2004). Functional-anatomic correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior parietal cortex. The Journal of Neuroscience,24(45), 10084-10092.
Silvanto, J., Muggleton, N. G., Cowey, A., & Walsh, V. (2007). Neural adaptation reveals state: dependent effects of transcranial magnetic stimulation. European Journal of Neuroscience, 25(6), 1874-1881.
Silvanto, J., Muggleton, N. G., & Walsh, V. (2008). State-dependency in brain stimulation studies of perception and cognition. Trends in cognitive sciences,12(12), 447-454.
Simons, J. S., Peers, P. V., Mazuz, Y. S., Berryhill, M. E., & Olson, I. R. (2009). Dissociation between memory accuracy and memory confidence following bilateral parietal lesions. Cerebral Cortex, bhp116.
Simons, J. S., Peers, P. V., Hwang, D. Y., Ally, B. A., Fletcher, P. C., & Budson, A. E. (2008). Is the parietal lobe necessary for recollection in humans?. Neuropsychologia, 46(4), 1185-1191.
Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: applications to dementia and amnesia. Journal of Experimental Psychology. General, 117, 34-50.
Squire, L. R., Wixted, J. T., & Clark, R. E. (2007). Recognition memory and the medial temporal lobe: a new perspective. Nature Reviews Neuroscience, 8(11), 872-883.
Stagg, C. J., & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist, 17(1), 37-53.
Tulving, E. (1985). Memory and consciousness. Canadian Psychology, 26(1), 1.
Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53(1), 1-25.
Tulving, E., & Markowitsch, H. J. (1998). Episodic and declarative memory: role of the hippocampus. Hippocampus, 8(3).
Tyrrell, R. A., & Owens, D. A. (1988). A rapid technique to assess the resting states of the eyes and other threshold phenomena: the modified binary search (MOBS). Behavior Research Methods, Instruments, & Computers, 20(2), 137-141.
Vallar, G., & Perani, D. (1986). The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man. Neuropsychologia, 24(5), 609-622.
Vann, S. D., Aggleton, J. P., & Maguire, E. A. (2009). What does the retrosplenial cortex do?. Nature Reviews Neuroscience, 10(11), 792-802.
Vilberg, K. L., Moosavi, R. F., & Rugg, M. D. (2006). The relationship between electrophysiological correlates of recollection and amount of information retrieved. Brain research, 1122(1), 161-170.
Vilberg, K. L., & Rugg, M. D. (2007). Dissociation of the neural correlates of recognition memory according to familiarity, recollection, and amount of recollected information. Neuropsychologia, 45(10), 2216-2225.
Vilberg, K. L., & Rugg, M. D. (2008). Memory retrieval and the parietal cortex: A review of evidence from a dual-process perspective. Neuropsychologia, 46(7), 1787-1799.
Vilberg, K. L., & Rugg, M. D. (2009a). Functional significance of retrieval‐related activity in lateral parietal cortex: Evidence from fMRI and ERPs. Human brain mapping, 30(5), 1490-1501.
Vilberg, K. L., & Rugg, M. D. (2009b). Lateral parietal cortex is modulated by amount of recollected verbal information. Neuroreport, 20(14), 1295.
Vilberg, K. L., & Rugg, M. D. (2012). The neural correlates of recollection: transient versus sustained fMRI effects. The Journal of Neuroscience, 32(45), 15679-15687.
Vilberg, K. L., & Rugg, M. D. (2014). Temporal dissociations within the core recollection network. Cognitive neuroscience, 5(2), 77-84.
Vincent, J. L., Snyder, A. Z., Fox, M. D., Shannon, B. J., Andrews, J. R., Raichle, M. E., & Buckner, R. L. (2006). Coherent spontaneous activity identifies a hippocampal-parietal memory network. Journal of neurophysiology, 96(6), 3517-3531.
Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in cognitive sciences, 9(9), 445-453.
Wang, J. X., Rogers, L. M., Gross, E. Z., Ryals, A. J., Dokucu, M. E., Brandstatt, K. L., ... & Voss, J. L. (2014). Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science, 345(6200), 1054-1057.
Wheeler ME, Buckner RL. (2004). Functional-anatomic correlates of remembering and knowing. Neuroimage. 21:1337–1349.
Wilding, E. L. (2000). In what way does the parietal ERP old/new effect index recollection?. International Journal of Psychophysiology, 35(1), 81-87.
Wilding, E. L., Doyle, M. C., & Rugg, M. D. (1995). Recognition memory with and without retrieval of context: An event-related potential study. Neuropsychologia, 33(6), 743-767.
Wilding, E. L., & Rugg, M. D. (1996). An event-related potential study of recognition memory with and without retrieval of source. Brain, 119(3), 889-905.
Wilding, E. L. & Ranganath, C. (2013). Electrophysiological correlates of episodic memory processes. In Luck S. J. & Kappenman E. S., (Eds.), The Oxford Handbook of Event-Related Potential Components, pp.373-395, Oxford University Press.
Wixted, J. T. (2007). Dual-process theory and signal-detection theory of recognition memory. Psychological review, 114(1), 152.
Woodruff, C. C., Hayama, H. R., & Rugg, M. D. (2006). Electrophysiological dissociation of the neural correlates of recollection and familiarity. Brain research, 1100(1), 125-135.
Yonelinas, A. P. (1994). Receiver-operating characteristics in recognition memory: evidence for a dual-process model. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(6), 1341.
Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46(3), 441-517.
Yonelinas, A. P., Kroll, N. E., Dobbins, I., Lazzara, M., & Knight, R. T. (1998). Recollection and familiarity deficits in amnesia: convergence of remember-know, process dissociation, and receiver operating characteristic data. Neuropsychology, 12(3), 323.
Yonelinas, A. P., & Jacoby, L. L. (1995). The relation between remembering and knowing as bases for recognition: Effects of size congruency. Journal of Memory and Language, 34(5), 622-643.
Yu, S. S., Johnson, J. D., & Rugg, M. D. (2012). Dissociation of recollection-related neural activity in ventral lateral parietal cortex. Cognitive neuroscience, 3(3-4), 142-149.
Yu, S. S., & Rugg, M. D. (2010). Dissociation of the electrophysiological correlates of familiarity strength and item repetition. Brain research, 1320, 74-84.
指導教授 鄭仕坤(Shih-Kuen Cheng) 審核日期 2014-10-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明