博碩士論文 101256008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.145.59.167
姓名 楊皓宇(Hao-Yu Yang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 量子點螢光粉封裝方式與可靠性提升之研究
(The study on the packaging method and reliability improvement of Quantum Dot phosphor)
相關論文
★ 腦電波傅利葉特徵頻譜之研究★ 光電星雲生物晶片之製作
★ 電場控制器光學應用★ 手機照相鏡頭設計
★ 氣功靜坐法對於人體生理現象影響之研究★ 針刺及止痛在大鼠模型的痛覺量測系統
★ 新光學三角量測系統與應用★ 離軸式光學變焦設計
★ 腦電波量測與應用★ Fresnel lens應用之量測
★ 線型光學式三角量測系統與應用★ 非接觸式電場感應系統
★ 應用田口法開發LED燈具設計★ 巴金森氏症雷射線三角量測系統
★ 以Sol-Gel法製備高濃度TiO2用於染料敏化太陽能電池光電極之特性研究★ 生產線上之影像量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
發光二極體(Light Emitting Diode,LED)為固態冷光源,是繼白熾燈、螢光燈和高壓鈉燈後的第四代照明新光源。因其節能環保、發光效率高、響應速度快、體積小、重量輕、壽命長等優點而被普遍應用在照明和背光顯示領域。量子點發光二極體(Quantum Dots Light-Emitting Diode,QDLED)是一種將量子點封裝於發光二極體(LED)的新型發光器件,其中量子點作為一種新型的光轉換材料,具有光譜可調、半波寬較窄、量子產率高等優點,可以使量子點發光二極體獲得高顯指、高飽和性、廣色域的出光,成為近年來在照明和背光顯示領域研究和應用的熱潮。本研究貢獻如下:
(1)介紹了量子點螢光粉的原理及其較傳統LED的優勢,歸納量子點螢光粉及其封裝的研究現狀,也說明了材料及封裝領域的關鍵挑戰,並探討如何提高性能和匹配最佳封裝結構。
(2)量子點螢光粉封裝結構優化。對量子點螢光粉的五種封裝結構:空氣間隙型、矽膠透鏡型、矽膠填充型、玻璃間隔型與防硫塗層型進行了實際封裝和比較;以低溫度、高熱穩定性及高可靠性為目標,得到了最佳封裝結構為玻璃間隔型封裝,其相較於傳統的矽膠填充型封裝,光效表現相當一致,在300mA電流點亮下,玻璃間隔型最高溫度為27.9℃,矽膠填充型最高溫度為29.9℃,對於量子點螢光膜片的溫升比矽膠填充型低40.8%,在高溫高濕及高溫老化實驗中亮度維持率分別優於矽膠填充型5.6%和3.5%,特別是在防硫能力上亮度維持率優於矽膠填充型41.4%。
在本實驗中找到了溫度最低及可靠度最佳的封裝結構,並透過熱量計算驗證得到了一致性的結果,為量子點螢光粉提供了可行的封裝思路。
摘要(英) Abstract
LED (Lighting Emitting Diode) is a kind of solid cold light source, which is the fourth generation lighting source after filament lamp, fluorescent lamp and high pressure sodium lamp. It has been widely applied in lighting and backlight field due to its advantages, such as energy conservation and environmental protection, high LE, fast response, small volume, light weight, and long life span, etc. QDLED (Quantum Dots Light-Emitting Diode) is a new luminescent device that packages quantum dots in LED, in which quantum dot is a new light conversion material, featuring adjustable spectrum, narrow half-wave width, and high quantum yield, etc. It can enable QDLED to show lights of high color rendering index, high saturation and wide color gamut, becoming an upsurge in research and application in the lighting and backlight field in recent years.
The contents of this paper are as follows:
(1) The principle of the quantum dot phosphors and the advantages of the relatively traditional LED were introduced, the research status of the quantum dot phosphors and their packaging were summarized, the key challenges in the material and packaging field were stated and the ways to improve the performance and find the most matching packaging structure were explored.
(2) Optimization of the packaging structure of the quantum dot phosphors. Five packaging structures: air gap type, silicon lens type, silicon filling type, glass gap type and sulfur resistance coating type were packaged and compared. Aiming at obtaining a packaging structure with lowest temperature and highest thermal stability and reliability, we found that the glass gap type was the most matching one. Compared with the traditional silicon filling type packaging, the light efficiency of the glass gap type was fairly consistent. When the glass gap type was lit at the current of 300mA, its highest temperature was 27.9℃, while it’s 29.9℃ for the silicon filling type. It was 40.8% lower than the silicon filling type in the temperature rise of the quantum dot fluorescent diaphragm. Its luminance maintenance rate was 5.6% and 3.5% higher than the silicon filling type in the wet high temperature operating life (WHTOL) and the high temperature operating life (HTOL) experiments respectively, and 41.4% higher especially in terms of the sulfur resistance.
In this experiment, a packaging structure with the lowest temperature and highest reliability was obtained, and it was consistent with the verification results of the heat calculation. It provides a feasible packaging thought for the quantum dot phosphor.
關鍵字(中) ★ 量子點
★ 螢光粉
★ 封裝方式
★ 可靠性
關鍵字(英)
論文目次 目錄
摘要.............................................................................................................i
Abstract....................................................................................................iii
誌謝............................................................................................................v
目錄...........................................................................................................vi
圖目錄.......................................................................................................ix
表目錄......................................................................................................xii
第一章 緒論..............................................................................................1
1.1研究背景......................................................................................1
1.2國內外研究現狀..........................................................................5
1.2.1量子點螢光粉研究現狀.....................................................5
1.2.2封裝結構研究現狀.............................................................8
1.3研究目的....................................................................................11
1.4論文架構....................................................................................12
第二章 基本原理....................................................................................14
2.1 LED元件結構介紹...................................................................14
2.2 LED發光原理...........................................................................16
2.3螢光粉發光原理........................................................................20
2.4量子點螢光粉理論基礎............................................................22
2.4.1量子點螢光粉概念...........................................................22
2.4.2量子侷限效應...................................................................22
2.5 LED特性參數...........................................................................25
2.5.1光度與輻射特性參量.......................................................25
2.5.2顯色指數...........................................................................30
2.5.3光效與流明效率...............................................................31
2.6量子點螢光粉封裝方式............................................................33
第三章 量子點螢光粉封裝結構比較....................................................35
3.1光效實驗....................................................................................36
3.1.1光效實驗設置...................................................................36
3.1.2光效實驗結果...................................................................38
3.2熱穩定性實驗............................................................................44
3.2.1溫度性能實驗...................................................................44
3.2.2熱量計算...........................................................................47
第四章 優化量子點螢光粉封裝方式提升可靠性................................50
4.1實驗設計....................................................................................51
4.1.1樣品製作...........................................................................51
4.1.2光效、光能比較實驗.......................................................53
4.1.3溫度性能實驗...................................................................53
4.1.4可靠性實驗.......................................................................54
4.2實驗結果....................................................................................56
4.2.1光效、光能比較實驗結果...............................................56
4.2.2溫度性能實驗結果...........................................................58
4.2.3熱量計算結果...................................................................60
4.2.4可靠性實驗結果...............................................................62
4.3結果與討論................................................................................66
第五章 總結與展望................................................................................70
5.1總結............................................................................................70
5.2展望............................................................................................73
參考文獻..................................................................................................75
參考文獻 參考文獻
[1] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science, 2005, 307:538-544
[2] Chen O, Wei H, Maurice A, et al. Pure colors from core-shell quantum dots. MRS Bull, 2013, 38:696–702
[3] http://m.elecfans.com/article/689386.html
[4] Talapin D V, Steckel J. Quantum dot light-emitting devices. MRS Bull, 2013, 38:685–695
[5] Rogach A L, Talapin D V, Shevchenko E V, et al. Organization of matter on different size scales: Monodisperse nanocrystals and their superstructures. Adv Funct Mater, 2002, 12: 653–664
[6] http://tv.zol.com.cn/598/5989419.html
[7] Kwak J, Bae W K, Lee D, et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett, 2012, 12:2362–2366
[8] Cho K S, Lee E K, Joo W J, et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nat Photon, 2009, 3: 341–345
[9]YAM F K,HASSAN Z.,Innovative advances in LED Technology, [J].Microelectron J, 2005, 36:129-137.
[10] Wonkeun Chung, Kwanhwi Park, Hong Jeong Yu, Jihyun Kim, Byung-Hee Chun, Sung Hyun Kim, et al. White emission using mixtures of Cd Se quantum dots and PMMA as a phosphor, Optical Materials 32, 2010, 515–521.
[11] Xiebing Wang, Wanwan Li and Kang Sun.Stable efficient Cd Se/Cd S/Zn S core/multi-shell nanophosphors fabricated through a phosphine-free route for white light-emitting-diodes with high color rendering properties, J. Mater. Chem, 2011, 21, 8558–8565.
[12] Xuefeng Peng,et al. Low-cost and high-color-quality white light emitting diodes based on Cd Se/Zn S quantum dots. Journal of Optics, 2015, 44:249-254.
[13] Woo-Seuk Song and Heesun Yang,Efficient White-Light-Emitting Diodes Fabricated from Highly Fluoscent Copper Indium Sulfide Core/Shell Quantum Dots,Chem.Mater. 2012, 24, 1961−1967.
[14] Jong-Hoon Kim and Heesun Yang,White lighting device from composite films embedded with hydrophilic Cu(In,Ga)S2/Zn S and hydrophobic In P/Zn S quantum dots,Nanotechnology 25, 2014, 225601.
[15] Wonkeun Chung, Hyunchul Jung, et al. Fabrication of high color rendering index white LED using Cd-free wavelength tunable Zn doped Cu In S2 nanocrystals, 22 October 2012 / Vol. 20, No. 22 / OPTICS EXPRESS 25071.
[16] Woo-Seuk Song,Eun-Pyo Jang, et al. Unique oxide overcoating of Cu In S2/Zn S core/shell quantum dots with Zn Ga2O4for fabrication of white light-emitting diode with improved operational stability,J Nanopart Res, 2013, 15:1462.
[17] Bingkun Chen,1,2 Qingchao Zhou , et al. Red emissive Cu In S2-based nanocrystals: a potential phosphor for warm white lightemitting diodes,22 April 2013 | Vol. 21, No. 8 | DOI:10.1364/OE.21.010105 | OPTICS EXPRESS 10106.
[18] Zhuolei Zhang,Dong Liu, et al. Dual Emissive Cu:In P/Zn S/In P/Zn S Nanocrystals: Single-Source“Greener”Emitters with Flexibly Tunable Emission from Visible to Near-Infrared and Their Application in White Light-Emitting Diodes,Chem. Mater. 2015, 27, 1405−1411.
[19]Sun-Hyoung Lee, Ki-Heon Lee, et al. Remote-type, high-color gamut white lightemitting diode based on In P quantum dot color converters,OPTICAL MATERIALS EXPRESS 1297.2014, Vol. 4, No. 7.
[20] Woo,J. Y., Kim,K., Jeong,S., et al. Enhanced photoluminance of layered quantum dot-phosphor nanocomposites as converting materials for light emitting diodes. The Journal of Physical Chemistry C. 2011, 115(43):20945-20952.
[21] Erdem,T., Nizamoglu,S., Demir H V. Computational study of power conversion and luminous efficiency performance for semiconductor quantum dot nanophosphors on light-emitting diodes. Optics express. 2012, 20(3):3275-3295.
[22] Lei,Xiang., Zheng,Huai., Guo,Xing., et al. Optical Performance Enhancement of Quantum Dot-Based Light-Emitting Diodes Through an Optimized Remote Structure. IEEE Transactions On Electron Devices. 2016, 63(2):691-697.
[23] Park.J.K., Lim.M.A., Kim.C.H., et al. White light-emitting diodes of Ga N-based Sr2Si O4: Eu and the luminescent properties [J]. Jpn. Appl. Phys. Lett. 2003, 82(5):683-685
[24] 陳學仕,量子點簡介,化工資訊 ChemNet 奈米專欄,Sep. 2002
[25] Kim J H, Song W S, Yang H. Color-converting bilayered composite plate of quantum-dot–polymer for high-color rendering white light-emitting diode. Opt Lett, 2013, 38: 2885–2888
[26] Kim J H, Yang H. White lighting device from composite films embedded with hydrophilic Cu (In, Ga) S2/ZnS and hydrophobic InP/ZnS quantum dots. Nanotechnology, 2014, 25: 801–811
[27] Unnithan A R, Barakat N A M, Abadir M F, et al. Novel Cd Pd S/PVAc core-shell nanofibers as an effective photocatalyst for organic pollutants degradation. J Mol Catal A: Chem, 2012, 363: 186–194
[28] Wu Y, Bao B, Su B, et al. Directed growth of calcein/nile red coaxial nanowire arrays via a two-step dip-coating approach. J Mater Chem A, 2013, 1: 8581–8586
[29] Kakati J, Datta P. On characteristics of PVA/Cd S and PVA/Cd S: Cu nanocomposites for applications as LED. J Lumin, 2013, 138: 25–31
[30] Fragouli D, Resta V, Pompa P P, et al. Patterned structures of in situ size controlled Cd S nanocrystals in a polymer matrix under UV ir-radiation. Nanotechnology, 2009, 20: 472–476
[31] Kharazmi A, Saion E, Faraji N, et al. Optical properties of CdS/PVA nanocomposite films synthesized using the gam-ma-irradiation-induced method. Chin Phys Lett, 2013, 30: 57803–57807
[32] Li Y, Zhang W, Li K, et al. Oxidative dissolution of polymer-coated Cd Se/Zn S quantum dots under UV irradiation: Mechanisms and ki-netics. Environ Pollut, 2012, 164: 259–266
[33] Chu M, Zhou L, Song X, et al. Incorporating quantum dots into polymer microspheres via a spray-drying and thermal-denaturizing ap-proach. Nanotechnology, 2006, 17: 1791–1796
[34] Sato M, Kawata A, Morito S, et al. Preparation and properties of polymer/zinc oxide nanocomposites using functionalized zinc oxide quantum dots. Euro Polymer J, 2008, 44: 3430–3438
[35] Yoon C, Hong H G, Kim H C, et al. High luminescence efficiency white light emitting diodes based on surface functionalized quantum dots dispersed in polymer matrices. Colloids Surf A: CPEAEH, 2013, 428: 86–91
[36] Yoon H C, Oh J H, Do Y R. High color rendering index of remote-type white LEDs with multi-layered quantum dot-phosphor films and short-wavelength pass dichroic filters. Int Soc Opt Photon, 2014 : 919013
[37] 朱永明,謝斌,羅小兵,量子點轉化 LED 封裝的進展與展望,科學通報,2017,第 62 卷 第 7 期:659 ~ 673
[38]https://web.archive.org/web/20080915133126/http://www.saltlakemetals.com/Silver_Sulfide.htm
[39] Xu, Xiaoyou; Ray, Robert; Gu, Yunlong; Ploehn, Harry J.; Gearheart, Latha; Raker, Kyle; Scrivens, Walter A. "Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments". Journal of the American Chemical Society. 2004, 126 (40): 12736–7.
[40] Lim, Shi Ying; Shen, Wei; Gao, Zhiqiang. "Carbon quantum dots and their applications". Chemical Society Reviews. 2015, 44 (1): 362–81.
指導教授 張榮森 審核日期 2020-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明