博碩士論文 101282001 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:
姓名 莊敏強(Min-Chiang Chuang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學
(Nucleation and growth kinetics of graphene growth on copper oxide substrate in a rapid thermal chemical vapor deposition process)
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應★ Thermal stability of supersaturated carbon incorporation in silicon
★ Reduction dynamics of locally oxidized graphene★ 微小游泳粒子在固定表面的聚集現象
★ Role of impurities in semiconductor: Silicon and ZnO substrate★ The growth of multilayer graphene through chemical vapor deposition
★ Characteristic of defect generated on graphene through pulsed scanning probe lithography★ Collective Motion in Binary Cell Mixtures Formed by Cancer Trans-endothelial Migration
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 石墨烯是一種由碳原子組成的二維薄膜,其厚度僅有一層原子層厚。自從2004年 Geim和 Novoselov 用膠帶法從石墨中剝離出石墨烯後,使得石墨稀的研究有著飛躍性的成長。二維空間的限制使得石墨烯有著獨特的線性色散關係,使得石墨烯有高電子遷移率、高透光性、堅韌且富有可撓性。這些特性讓石磨烯有著豐富的應用潛力。然而,高品質的石墨烯在工業上難以大量製造,這也成了石墨烯應用的瓶頸。在眾多製造石墨烯的方法中,化學氣相沉積被認為是最有可能工業化的方法,其優點為容易大量製造且便宜。為了提升石墨烯在工業上的應用,有兩個重要的重要的關鍵:大量製造和提升石墨烯的品質。
化學氣相沉積的製造限制在於冗長的升溫及降溫時間,一種利用鹵素燈加熱的快速升溫系統可以大量節省製呈時間。然而用此方法生成的石墨烯單晶非常微小,僅有微米等級;另一方面,Rouff 的團隊利用氧化銅為基板可以成長出公分等級的石墨烯單晶,此方法大大提升了石磨烯的品質,可以達到近乎無缺陷的石墨烯。
摘要(英) Graphene is a two dimension thin film consisted with carbon atoms in honeycomb ordered. Due to its unique band structure, graphene as unique electronic and material properties. Therefore graphene is expected to have great application potential in the future. However, it is still challenging to produce large amount and perfect graphene which is suitable for the application. This shortage limited the ceiling of the potential of graphene. Among all possible solution to produce large amount and defect-free graphene, chemical vapor deposition seems like to be the possible way to fabricate industry scale graphene.
Three of the key issues in chemical vapor deposition is the time, cost and quality of graphene. First, nowadays it is the guarantee way to form large and perfect graphene in lower pressure chemical vapor deposition system. However, such a grain needs long growth time which is impossible to meet the needs of industry scale. Also, the long heating and cooling time for furnace decrease the throughput of graphene. Second, hot wall furnace waste unwanted heat into the environment which is not helpful for the chemical vapor deposition process. Third, the quality of graphene of CVD is comparing poorly with mechanical exfoliation. In order to suit above issues, rapid thermal chemical vapor deposition is considered.
Although rapid thermal chemical vapor deposition is a low cost and fast production way to grow graphene, the graphene grain is small due to the non-equilibrium heating process. Recently this issue is solved by growing graphene on copper oxide. By exposing the oxygen on the defect on copper, rapid thermal chemical vapor deposition is able to grow large single crystal graphene. However, the underlying mechanism is still the shortage.
In this work, we investigate the role of oxygen in graphene chemical vapor deposition on copper oxide. We find out the mechanism of the nucleation and growth process with oxygen exposure by extending the JMAK model into a non-equilibrium region to explain the initial situation of CVD process. The extending JMAK model is able to explain the increasing in nucleation rate. In addition, a correlation function analysis in traditional condensed matter physic is workable to quantify the spatial distribution and uniformity of Graphene Island. This analysis also points out the transition from carbon forming new grain at local nucleation site to joining larger cluster and coalescence after oxygen exposure.
關鍵字(中) ★ 石墨稀
★ 化學氣相沉積
關鍵字(英) ★ graphene
★ Chemical vapor deposition
論文目次 摘要 i
Abstract ii
致謝 iv
Content v
List of figures x
List of tables xxi
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Motivation 3
1.3 Thesis outline 5
Chapter 2 Background 6
2.1 Introduction to Graphene 6
2.1.1 Graphene history 7
2.1.2 The structure of graphene 8
2.1.3 Tight binding mode calculation on graphene 9
2.1.4 Graphene in relativistic frame work 13
2.1.5 Relativistic Schrodinger/Klein-Gordon equation 13
2.1.6 Dirac equation 15
2.1.7 Energy level in strong magnetic field 15
2.1.8 Quantum Hall effect 18
2.2 Graphene fabricates method 20
2.2.1 Mechanic exfoliation 20
2.2.2 Chemical Exfoliation 21
2.2.3 Graphene formation by SiC 23
2.3 Graphene application 25
2.3.1 Graphene FET 25
2.3.2 Sensors 26
2.3.3 Transparent conductive films 27
2.3.4 Graphene electrode and supercapacitors 28
2.4 Introduction to CVD graphene 29
2.4.1 CVD history and key progress 30
2.4.2 Brief description of CVD graphene setup 31
2.4.3 Thermodynamic of graphene 33
2.4.4 Nucleation and Growth of graphene films 34
2.4.5 The pretreatment of copper surface 40
2.4.6 The role of transition metal 41
2.4.7 Compare the Mechanism in Cu and Ni 43
2.4.8 The role of the flow 44
2.4.9 Rate limiting model 45
2.4.10 The fractal dimension and diffusion limit aggregation 47 Introduction to fractal dimension calculation 47 Box counting calculation 51 RTCVD 52 Oxidation treatment 53
2.5 Characteristic method on graphene 54
2.5.1 Raman Spectroscopy 55 Raman scattering 55 Raman spectroscopy on graphene 56
2.5.2 X-ray photoelectron spectroscopy (XPS) 60
2.5.3 Scanning electron microscopy 61
2.5.4 Atomic force microscopy 64 Working principle 64 Van der Waals force 64 Lennard-Jones potential 65 Contact mode 66 Tapping mode 68
2.5.5 JMAK model 71
Chapter 3 Experiment method 77
3.1 Rapid thermal chemical vapor deposition system 77
3.2 The CVD process 79
3.3 Graphene transfer method 81
3.4 Method and data analysis 82
3.4.1 Image processing by image J 82
3.4.2 Image process 83
3.4.3 Fractal dimension calculation 86
3.4.4 Calculation of correlation function 87
3.4.5 Local anodic oxidation. 88
Chapter 4 Result and discussion 90
4.1 Result on CVD graphene 90
4.1.1 Raman spectroscopy and XPS measurement 90
4.1.2 Result in APCVD 93
4.1.3 Role of oxygen in Rapid thermal Low-pressure chemical vapor deposition 97
4.1.4 Time evolution of graphene on all three sample 104
4.1.5 The JMAK fitting 108
4.1.6 Quantify the property of graphene grain 112
4.2 Artificial defect generates by Local anodic oxidation 117
4.2.1 AFM characterization 118
4.2.2 Micro-Raman spectroscopy 119
4.2.3 LAO speed test 121
Chapter 5 Conclusion 123
Reference 125
Appendix 133
C Code 133
參考文獻 1. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183-91.
2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004;306(5696):666-9.
3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438(7065):197-200.
4. Zhang YB, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry′s phase in graphene. Nature. 2005;438(7065):201-4.
5. Sutter PW, Flege JI, Sutter EA. Epitaxial graphene on ruthenium. Nature Materials. 2008;7(5):406-11.
6. Wu X, Hu Y, Ruan M, Madiomanana NK, Hankinson J, Sprinkle M, et al. Half integer quantum Hall effect in high mobility single layer epitaxial graphene. Applied Physics Letters. 2009;95(22):223108.
7. Stampfer C, Schurtenberger E, Molitor F, Güttinger J, Ihn T, Ensslin K. Tunable Graphene Single Electron Transistor. Nano letters. 2008;8(8):2378-83.
8. Lemme MC, Echtermeyer TJ, Baus M, Kurz H. A Graphene Field-Effect Device. Electron Device Letters, IEEE. 2007;28(4):282-4.
9. Schwierz F. Graphene transistors. Nat Nano. 2010;5(7):487-96.
10. Koswatta SO, Valdes-Garcia A, Steiner MB, Lin YM, Avouris P. Ultimate RF Performance Potential of Carbon Electronics. IEEE Transactions on Microwave Theory and Techniques. 2011;59(10):2739-50.
11. Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, et al. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science. 2010;327(5966):662-.
12. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ. Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano letters. 2010;10(12):4863-8.
13. El-Kady MF, Strong V, Dubin S, Kaner RB. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science. 2012;335(6074):1326-30.
14. El-Kady MF, Kaner RB. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun. 2013;4:1475.
15. Bhaviripudi S, Jia XT, Dresselhaus MS, Kong J. Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst. Nano letters. 2010;10(10):4128-33.
16. Dimitrakopoulos C, Lin Y-M, Grill A, Farmer DB, Freitag M, Sun Y, et al. Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high frequency transistors. Journal of Vacuum Science & Technology B. 2010;28(5):985-92.
17. Loh KP, Bao Q, Ang PK, Yang J. The chemistry of graphene. Journal of Materials Chemistry. 2010;20(12):2277-89.
18. Shen T, Gu JJ, Xu M, Wu YQ, Bolen ML, Capano MA, et al. Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001). Applied Physics Letters. 2009;95(17):172105.
19. Coraux J, N′Diaye AT, Busse C, Michely T. Structural coherency of graphene on Ir(111). Nano letters. 2008;8(2):565-70.
20. Li X, Magnuson CW, Venugopal A, An J, Suk JW, Han B, et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano letters. 2010;10(11):4328-34.
21. Eres G, Regmi M, Rouleau CM, Chen J, Ivanov IN, Puretzky AA, et al. Cooperative Island Growth of Large-Area Single-Crystal Graphene on Copper Using Chemical Vapor Deposition. ACS Nano. 2014;8(6):5657-69.
22. Lherbier A, Blase X, Niquet Y-M, Triozon F, Roche S. Charge Transport in Chemically Doped 2D Graphene. Phys Rev Lett. 2008;101(3):036808.
23. Ryu J, Kim Y, Won D, Kim N, Park JS, Lee E-K, et al. Fast Synthesis of High-Performance Graphene Films by Hydrogen-Free Rapid Thermal Chemical Vapor Deposition. ACS Nano. 2014;8(1):950-6.
24. Mogera U, Kurra N, Radhakrishnan D, Narayana C, Kulkarni GU. Low cost, rapid synthesis of graphene on Ni: An efficient barrier for corrosion and thermal oxidation. Carbon. 2014;78:384-91.
25. Miseikis V, Convertino D, Mishra N, Gemmi M, Mashoff T, Heun S, et al. Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor. 2D Materials. 2015;2(1):014006.
26. Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, et al. The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science. 2013;342(6159):720-3.
27. Geim AK, Novoselov KS. The rise of graphene. Nature Materials. 2007;6(3):183-91.
28. Beenakker CWJ. Specular andreev Reflection in graphene. Phys Rev Lett. 2006;97(6).
29. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, et al. Fine structure constant defines visual transparency of graphene. Science. 2008;320(5881):1308-.
30. Zhu SE, Yuan SJ, Janssen GCAM. Optical transmittance of multilayer graphene. Epl-Europhys Lett. 2014;108(1).
31. Lee C, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385-8.
32. Wallace PR. The Band Theory of Graphite. Physical Review. 1947;71(9):622-34.
33. Huang PY, Ruiz-Vargas CS, van der Zande AM, Whitney WS, Levendorf MP, Kevek JW, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature. 2011;469(7330):389-92.
34. Pacile D, Meyer JC, Girit CO, Zettl A. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Applied Physics Letters. 2008;92(13).
35. Thripuranthaka M, Late DJ. Temperature Dependent Phonon Shifts in Single-Layer WS2. ACS applied materials & interfaces. 2014;6(2):1158-63.
36. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol. 2012;7(11):699-712.
37. Li LK, Yu YJ, Ye GJ, Ge QQ, Ou XD, Wu H, et al. Black phosphorus field-effect transistors. Nat Nanotechnol. 2014;9(5):372-7.
38. Blake P, Hill EW, Castro Neto AH, Novoselov KS, Jiang D, Yang R, et al. Making graphene visible. Applied Physics Letters. 2007;91(6).
39. Eigler S, Enzelberger-Heim M, Grimm S, Hofmann P, Kroener W, Geworski A, et al. Wet Chemical Synthesis of Graphene. Advanced Materials. 2013;25(26):3583-7.
40. Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater. 2014;13(6):624-30.
41. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nano. 2008;3(9):563-8.
42. Alzari V, Nuvoli D, Scognamillo S, Piccinini M, Gioffredi E, Malucelli G, et al. Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization. Journal of Materials Chemistry. 2011;21(24):8727-33.
43. Sutter P. Epitaxial graphene: How silicon leaves the scene. Nat Mater. 2009;8(3):171-2.
44. Alexander-Webber JA, Baker AMR, Janssen TJBM, Tzalenchuk A, Lara-Avila S, Kubatkin S, et al. Phase Space for the Breakdown of the Quantum Hall Effect in Epitaxial Graphene. Phys Rev Lett. 2013;111(9):096601.
45. Han S-J, Garcia AV, Oida S, Jenkins KA, Haensch W. Graphene radio frequency receiver integrated circuit. Nat Commun. 2014;5.
46. Wu Y, Jenkins KA, Valdes-Garcia A, Farmer DB, Zhu Y, Bol AA, et al. State-of-the-Art Graphene High-Frequency Electronics. Nano letters. 2012;12(6):3062-7.
47. Denis PA. Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur. Chemical Physics Letters. 2010;492(4–6):251-7.
48. Han MY, Özyilmaz B, Zhang Y, Kim P. Energy Band-Gap Engineering of Graphene Nanoribbons. Phys Rev Lett. 2007;98(20):206805.
49. RadisavljevicB, RadenovicA, BrivioJ, GiacomettiV, KisA. Single-layer MoS2 transistors. Nat Nano. 2011;6(3):147-50.
50. Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, et al. Silicene field-effect transistors operating at room temperature. Nat Nano. 2015;10(3):227-31.
51. Roy T, Tosun M, Kang JS, Sachid AB, Desai SB, Hettick M, et al. Field-Effect Transistors Built from All Two-Dimensional Material Components. ACS Nano. 2014;8(6):6259-64.
52. Ratinac KR, Yang W, Ringer SP, Braet F. Toward Ubiquitous Environmental Gas Sensors—Capitalizing on the Promise of Graphene. Environmental Science & Technology. 2010;44(4):1167-76.
53. Yuan W, Shi G. Graphene-based gas sensors. Journal of Materials Chemistry A. 2013;1(35):10078-91.
54. Pumera M. Graphene in biosensing. Materials Today. 2011;14(7–8):308-15.
55. Wang X, Zhi L, Müllen K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano letters. 2008;8(1):323-7.
56. Zhao X, Hayner CM, Kung MC, Kung HH. In-Plane Vacancy-Enabled High-Power Si–Graphene Composite Electrode for Lithium-Ion Batteries. Advanced Energy Materials. 2011;1(6):1079-84.
57. Novoselov KS, Fal′ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature. 2012;490(7419):192-200.
58. C VMaDCaNMaMGaTMaSHaNHaFBaMCaVPa. Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor. 2D Materials. 2015;2(1):014006.
59. Banerjee BC, Hirt TJ, Walker PL. Pyrolytic Carbon Formation from Carbon Suboxide. Nature. 1961;192(4801):450-1.
60. Arsem WC. Transformation of Other Forms of Carbon into Graphite. Journal of Industrial & Engineering Chemistry. 1911;3(11):799-804.
61. Acheson EG. Manufacture of graphite. Google Patents; 1896.
62. May JW. Platinum surface LEED rings. Surface Science. 1969;17(1):267-70.
63. Shelton JC, Patil HR, Blakely JM. Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition. Surface Science. 1974;43(2):493-520.
64. Eizenberg M, Blakely JM. Carbon monolayer phase condensation on Ni(111). Surface Science. 1979;82(1):228-36.
65. Hamilton JC, Blakely JM. Carbon segregation to single crystal surfaces of Pt, Pd and Co. Surface Science. 1980;91(1):199-217.
66. Li XS, Cai WW, An JH, Kim S, Nah J, Yang DX, et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science. 2009;324(5932):1312-4.
67. Karu AE, Beer M. Pyrolytic Formation of Highly Crystalline Graphite Films. Journal of Applied Physics. 1966;37(5):2179-81.
68. Robertson SD. Graphite Formation from Low Temperature Pyrolysis of Methane over some Transition Metal Surfaces. Nature. 1969;221(5185):1044-6.
69. Himpsel FJ, Christmann K, Heimann P, Eastman DE, Feibelman PJ. Adsorbate band dispersions for C on Ru(0001). Surface Science. 1982;115(3):L159-L64.
70. Rut′kov EV, Kuz′michev AV, Gall NR. Carbon interaction with rhodium surface: Adsorption, dissolution, segregation, growth of graphene layers. Phys Solid State+. 2011;53(5):1092-8.
71. Obraztsov AN, Obraztsova EA, Tyurnina AV, Zolotukhin AA. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon. 2007;45(10):2017-21.
72. Reina A, Jia XT, Ho J, Nezich D, Son HB, Bulovic V, et al. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano letters. 2009;9(1):30-5.
73. Riikonen J, Kim W, Li C, Svensk O, Arpiainen S, Kainlauri M, et al. Photo-thermal chemical vapor deposition of graphene on copper. Carbon. 2013;62:43-50.
74. Li X, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. Journal of the American Chemical Society. 2011;133(9):2816-9.
75. Li Z, Zhou F, Parobek D, Shenoy GJ, Muldoon P, Liu H. Copper substrate as a catalyst for the oxidation of chemical vapor deposition-grown graphene. Journal of Solid State Chemistry. 2015;224:14-20.
76. Kim H, Mattevi C, Calvo MR, Oberg JC, Artiglia L, Agnoli S, et al. Activation Energy Paths for Graphene Nucleation and Growth on Cu. Acs Nano. 2012;6(4):3614-23.
77. Chen S, Ji H, Chou H, Li Q, Li H, Suk JW, et al. Millimeter-size single-crystal graphene by suppressing evaporative loss of Cu during low pressure chemical vapor deposition. Adv Mater. 2013;25(14):2062-5.
78. Guermoune A, Chari T, Popescu F, Sabri SS, Guillemette J, Skulason HS, et al. Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon. 2011;49(13):4204-10.
79. Li Z, Wu P, Wang C, Fan X, Zhang W, Zhai X, et al. Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources. ACS Nano. 2011;5(4):3385-90.
80. Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM. Growth of graphene from solid carbon sources. Nature. 2010;468(7323):549-52.
81. Dong X, Wang P, Fang W, Su C-Y, Chen Y-H, Li L-J, et al. Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. Carbon. 2011;49(11):3672-8.
82. Murakami Y, Miyauchi Y, Chiashi S, Maruyama S. Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol. Chemical Physics Letters. 2003;374(1–2):53-8.
83. Murakami Y, Miyauchi Y, Chiashi S, Maruyama S. Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates. Chemical Physics Letters. 2003;377(1–2):49-54.
84. Miyauchi Y, Chiashi S, Murakami Y, Hayashida Y, Maruyama S. Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol. Chemical Physics Letters. 2004;387(1–3):198-203.
85. Miyata Y, Kamon K, Ohashi K, Kitaura R, Yoshimura M, Shinohara H. A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling. Applied Physics Letters. 2010;96(26):263105.
86. Srivastava A, Galande C, Ci L, Song L, Rai C, Jariwala D, et al. Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous, Single, and Few-Layer Graphene Films. Chemistry of Materials. 2010;22(11):3457-61.
87. Tuan DV, Kotakoski J, Louvet T, Ortmann F, Meyer JC, Roche S. Scaling Properties of Charge Transport in Polycrystalline Graphene. Nano letters. 2013;13(4):1730-5.
88. Wang Z-J, Weinberg G, Zhang Q, Lunkenbein T, Klein-Hoffmann A, Kurnatowska M, et al. Direct Observation of Graphene Growth and Associated Copper Substrate Dynamics by in Situ Scanning Electron Microscopy. ACS Nano. 2015;9(2):1506-19.
89. Zhang W, Wu P, Li Z, Yang J. First-Principles Thermodynamics of Graphene Growth on Cu Surfaces. The Journal of Physical Chemistry C. 2011;115(36):17782-7.
90. Vlassiouk I, Smirnov S, Regmi M, Surwade SP, Srivastava N, Feenstra R, et al. Graphene Nucleation Density on Copper: Fundamental Role of Background Pressure. J Phys Chem C. 2013;117(37):18919-26.
91. Zhang B, Lee WH, Piner R, Kholmanov I, Wu Y, Li H, et al. Low-Temperature Chemical Vapor Deposition Growth of Graphene from Toluene on Electropolished Copper Foils. ACS Nano. 2012;6(3):2471-6.
92. Li XS, Magnuson CW, Venugopal A, An JH, Suk JW, Han BY, et al. Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process. Nano letters. 2010;10(11):4328-34.
93. Oshima C, Nagashima A. Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J Phys-Condens Mat. 1997;9(1):1-20.
94. Jia C, Jiang J, Gan L, Guo X. Direct optical characterization of graphene growth and domains on growth substrates. Sci Rep. 2012;2:707.
95. Witten TA, Sander LM. Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon. Phys Rev Lett. 1981;47(19):1400-3.
96. Ball R, Nauenberg M, Witten TA. Diffusion-controlled aggregation in the continuum approximation. Physical Review A. 1984;29(4):2017-20.
97. Kim SM, Kim JH, Kim KS, Hwangbo Y, Yoon JH, Lee EK, et al. Synthesis of CVD-graphene on rapidly heated copper foils. Nanoscale. 2014;6(9):4728-34.
98. Huang L, Chang QH, Guo GL, Liu Y, Xie YQ, Wang T, et al. Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition. Carbon. 2012;50(2):551-6.
99. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS. Raman spectroscopy in graphene. Physics Reports. 2009;473(5–6):51-87.
100. Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nano. 2013;8(4):235-46.
101. Avrami M. Kinetics of Phase Change. I General Theory. The Journal of Chemical Physics. 1939;7(12):1103-12.
102. Avrami M. Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei. The Journal of Chemical Physics. 1940;8(2):212-24.
103. Avrami M. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. The Journal of Chemical Physics. 1941;9(2):177-84.
104. Avramov I. Kinetics of distribution of infections in networks. Physica A: Statistical Mechanics and its Applications. 2007;379(2):615-20.
105. Weidenhof V, Friedrich I, Ziegler S, Wuttig M. Laser induced crystallization of amorphous Ge2Sb2Te5 films. Journal of Applied Physics. 2001;89(6):3168-76.
106. Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun. 2012;3:699.
指導教授 溫偉源(Wei Yen Woon) 審核日期 2016-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明