博碩士論文 101282601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:139 、訪客IP:3.146.221.204
姓名 董琦涵(Hien Thi Doan)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Measurement of Zγ production cross section in pp collisions at sqrt(s) = 13 TeV with the CMS detector)
相關論文
★ 利用CMS探測器量測7TeV下的Zγ產生截面★ 以CMS 偵測器在質心質量為8TeV使用雙渺子和三秒子頻道尋找雙電荷希格斯玻色子
★ 在質子對撞能量8TeV下尋找具有雙電子雙渺子末態的激發態輕子★ Measurement of Zγ production in 5 fb-1 of pp collisions at √s = 7 TeV with the CMS detector
★ Search for a Higgs boson decaying into γ∗γ → eeγ in pp collisions at √s = 8 TeV with the CMS detector★ Measurement of Z boson production in the electron decay channel in p+Pb collisions at √sNN = 5.02 TeV with the CMS detector
★ 火花偵測器的製成★ Search for the production of two Higgs bosons in the final state with two photons and two b quarks in proton-proton collision at √s = 13 TeV
★ Search for Exotic Decay of A Higgs Boson into A Dark Photon and a Standard Model Photon in pp Collisions at √s = 13 TeV★ Search for a Higgs boson decay into γ*γ→μμγ in pp collisions at √s = 13 TeV
★ Search for the rare decays of Z and Higgs bosons to J/ψ plus photon at √s = 13 TeV★ Search for H→Zγ→bbγ produced in association with a Z boson in proton-proton collisions at √s = 13 TeV with the CMS detector at the LHC
★ nono★ TCAD simulation of silicon detector
★ Assembly and Beam Test Analysis of sPHENIX INTT Detector★ 研究 Dalitz Higgs 的 Muon 效率用於 Run II 和多變量電子用於 CMS 的 Run III
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 使用CMS檢測器在LHC處使用質子 - 質子碰撞來呈現Z +γ產生橫截面的測量。數據是在2016年收集的,對應於13 TeV的質心能量的35.9 fb ^ -1的積分亮度。選擇具有Z玻色子衰變為一對μ子(μ+μ-)或電子(e + e-)且Z玻色子質量> 50GeV和高橫向動量光子(pT≥20GeV)的事件。基準橫截面僅包括在最終狀態下的額外噴射器的數量中包含地測量。此外,還給出了光子橫向動量pT和三體光子和Z波色子的不變質量的微分截面。通過模擬擬合來自模擬的信號模板和從數據邊帶區域獲得的背景模板,估計主要背景,Z +噴射事件,其中從π0的衰變或從錯誤識別的粒子產生非提示光子。測得的包含基準截面為:σmea= 1776±11(stat)±15(syst)±44(lumi)fb,排他性結果為σmea= 1328±11(stat)±30(syst)±33(lumi) fb。發現這些值與模擬 ”MATRIX“在next-to-next-leading order(NNLO)σNNLO= 1797±41 fb和σNNLO= 1293±48 fb時的預測非常一致。
摘要(英) Measurement of the Z plus γ production cross section is presented using proton-proton collisions at the LHC with the CMS detector. The data were collected in 2016 corresponding to an integrated luminosity of 35.9 fb^−1 at the center-of-mass energy of 13 TeV. The events having a Z boson decaying to a pair of muons (μ+μ−) or electrons (e+e−) with Mll > 50 GeV and a high transverse momentum photon (pT ≥ 20 GeV) are selected. The fiducial cross sections are measured inclusively, exclusively and in terms of number of additional jets in the final state. Moreover, the differential cross sections in photon transverse momentum pT and three-body invariant mass Mllγ are also presented. The main background, Z+jets events in which a non-prompt photon is produced from the decay of π0 or from mis-identified particles, is estimated by template fitting with a signal template from simulation and background template obtained from the data sideband region. The measured inclusive fiducial cross section is: σmea = 1776 ± 11(stat) ± 15(syst) ± 44(lumi) fb and the exclusive result is σmea = 1328 ± 11(stat) ± 30(syst) ± 33(lumi) fb. The values are found to be in good agreement with prediction from MATRIX at next-to-next-to-leading order (NNLO) σNNLO = 1797 ± 41 fb and σNNLO = 1293 ± 48 fb for inclusive and
exclusive, respectively.
關鍵字(中) ★ 高能物理 關鍵字(英) ★ High energy physics
論文目次 Introduction .................................. 1
1 Theoretical Overview 2
1.1 StandardModel............................. 2
1.2 Electroweaktheory ........................... 3
1.3 Overview of Zγ production and anomalous triple gauge coupling 4
2 The Experimental Setup 7
2.1 TheLargeHadronCollider ...................... 7
2.2 TheCMSdetector............................ 7 2.2.1 ThecoordinateofCMSdetector ............... 9 2.2.2 Tracker.............................. 10 2.2.3 Magnet.............................. 10 2.2.4 ElectromagneticCalorimeter ................. 11 2.2.5 TheHadronicCalorimeter................... 13 2.2.6 MuonSystem .......................... 14 2.2.7 Triggers ............................. 15
3 Analysis method 17
3.1 Dataandsimulationsamples ..................... 17 3.1.1 Datasamples .......................... 17 3.1.2 MCsimulationsamples .................... 17
3.2 Triggers.................................. 20
3.3 Eventandobjectselections....................... 21 3.3.1 Electronselection........................ 21 3.3.2 Muonselection ......................... 21 3.3.3 Photonselection ........................ 22 3.3.4 Jetselection ........................... 24 3.3.5 Eventselection ......................... 24
3.4 Efficiencyandscalefactor ....................... 32 3.4.1 Leptonefficiency ........................ 32
3.4.2 Photon selection efficiency and scale factor . . . . . . . . . 32 3.5 PhotonshowershapeMVA ...................... 34
iv
3.6 Templatefittingforyieldextraction.................. 37
3.6.1 Signaltemplate ......................... 37
3.6.2 Showershapecorrection.................... 38
3.6.3 Signaltemplateshapeuncertainty . . . . . . . . . . . . . . 38
3.6.4 Backgroundtemplate ..................... 38
3.6.5 Fittingresults .......................... 40
3.7 Unfolding ................................ 46
4 Results 50
4.1 Systematicuncertainty ......................... 50
4.1.1 Eventselection ......................... 50
4.1.2 Lepton and photon energy scale and resolution . . . . . . 50
4.1.3 Template............................. 50
4.1.4 Jetenergycorrectionandresolution . . . . . . . . . . . . . 51
4.1.5 Unfolding ............................ 54
4.1.6 Pile-upandluminosity .................... 54
4.1.7 Uncertaintyfortheory..................... 56
4.2 Theorycalculation ........................... 57 4.2.1 MATRIX............................. 57 4.2.2 MCFM.............................. 57 4.2.3 aMC@NLO ........................... 57
4.3 Results .................................. 58 4.3.1 Differentialcrosssection.................... 58 4.3.2 Combinationoftwochannels................. 59
4.4 Conclusions ............................... 65
A Trigger efficiencies and scale factors 66
A.1 Doubleelectrontrigger......................... 66 A.2 Doublemuontrigger.......................... 68 A.3 DZefficiency............................... 70
B Photon BDT 73
B.1 InputvariablesofphotonBDTtrainning. . . . . . . . . . . . . . . 73 B.2 Showershapevariablecorrection ................... 77
C Sideband optimization
D Unfolding tests
E Non-perturbative Correction
81 86 90
v
F Fitting plots Bibliography
92 107
參考文獻 [1] H. Baer V. Barger and K. Hagiwara. “Testing models for anomalous radia- tive decays of the Z boson”. In: Phys.Rev.D 40 ().
[2] U. Baur and E. L. Berger. “Probing the weak-boson sector in Zγ production at hadron colliders”. In: Phys.Rev.D 4889 ().
[3] T. Han U. Baur and J. Ohnemus. “QCD corrections and anomalous cou- plings in Zγ production at hadron colliders”. In: Phys.Rev.D 57.2823 ().
[4] D. Zeppenfeld K. Hagiwara R.D. Peccei and K. Hikasa. In: Nucl. Phys. B 282 253 ().
[5] G. J. Gounaris, J. Layssac, and F. M. Renard. “Off-shell structure of the anomalous Z and γ selfcouplings”. In: Phys. Rev. D65 (2002). [Phys. Rev.D62,073012(2000)], p. 017302. DOI: 10 . 1103 / PhysRevD . 62 . 073012,10.1103/PhysRevD.65.017302. arXiv: hep-ph/0005269 [hep-ph].
[6] Celine Degrande. “A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions”. In: JHEP 2014.2 (2014), p. 101.
[7] T. Aaltonen et al. “Measurement of Z gamma Production in pp ̄ Collisions at √s = 1.96 TeV”. In: Phys. Rev. D82 (2010), p. 031103. DOI: 10.1103/ PhysRevD.82.031103. arXiv: 1004.1140 [hep-ex].
[8] V. M. Abazov et al. “Z γ production and limits on anomalous Z Z γ and Zγγ couplings in pp ̄ collisions at √s = 1.96- TeV”. In: Phys. Lett. B653 (2007), pp. 378–386. DOI: 10.1016/j.physletb.2007.08.035. arXiv: 0705.1550 [hep-ex].
[9] Serguei Chatrchyan et al. “Measurement of the Wγ and Zγ inclusive cross sections in pp collisions at √s = 7 TeV and limits on anomalous triple gauge boson couplings”. In: Phys. Rev. D89.9 (2014), p. 092005. DOI: 10.1103/ PhysRevD.89.092005. arXiv: 1308.6832 [hep-ex].
[10] Georges Aad et al. “Measurements of Wγ and Zγ production in pp col- lisions at √s=7 TeV with the ATLAS detector at the LHC”. In: Phys. Rev. D87.11 (2013). [Erratum: Phys. Rev.D91,no.11,119901(2015)], p. 112003. DOI: 10.1103/PhysRevD.87.112003,10.1103/PhysRevD.91.119901. arXiv: 1302.1283 [hep-ex].
107
[11] Vardan Khachatryan et al. “Measurement of the Z? Production Cross Sec- tion in pp Collisions at 8 TeV and Search for Anomalous Triple Gauge Boson Couplings”. In: JHEP 04 (2015), p. 164. DOI: 10.1007/JHEP04(2015)164. arXiv: 1502.05664 [hep-ex].
[12] Georges Aad et al. “Measurements of Zγ and Zγγ production in pp colli- sions at √s = 8 TeV with the ATLAS detector”. In: Phys. Rev. D93.11 (2016), p. 112002. DOI: 10.1103/PhysRevD.93.112002. arXiv: 1604.05232 [hep-ex].
[13] Lyndon Evans and Philip Bryant. “LHC machine”. In: JINST 3.08 (2008), S08001.
[14] Georges Aad et al. “The ATLAS experiment at the CERN large hadron collider”. In: Jinst 3 (2008), S08003.
[15] Serguei Chatrchyan, EA de Wolf, et al. “The CMS experiment at the CERN LHC”. In: Journal of instrumentation.-Bristol, 2006, currens 3 (2008), S08004–1.
[16] ALICE Collaboration, K Aamodt, et al. “The ALICE experiment at the CERN LHC. JINST 3”. In: S08002 (2008), pp. 1748–0221.
[17] LHCb Collaboration et al. “The LHCb experiment at the CERN LHC”. In: JINST 3.S08005 (2008), p. 31.
[18] Petar Adzic. “Energy resolution of the barrel of the CMS electromagnetic calorimeter”. In: JINST 2.04 (2007), P04004.
[19] Pablo Goldenzweig. “Operational Experience with the CMS Hadronic Calorimeter in the 2011 LHC run”. In: Journal of Physics: Conference Series. Vol. 404. 1. IOP Publishing. 2012, p. 012005.
[20] CMS Collaboration. “Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV”. In: (2012). DOI: 10.1088/1748- 0221/7/10/P10002. eprint: arXiv:1206.4071.
[21] CMS Collaboration. “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at ?(s) = 13 TeV”. In: (2018). DOI: 10.1088/1748-0221/13/06/P06015. eprint: arXiv:1804. 04528.
[22] CMS Collaboration. In: Phys. Rev. Lett. 112 (2014) 191802 (). DOI: 10.1103/ PhysRevLett.112.191802. arXiv: 0911.4855.
[23] https://twiki.cern.ch/twiki/bin/viewauth/CMS/ SummaryTable1G25ns.
[24] Johan Alwall et al. “The automated computation of tree-level and next- to-leading order differential cross sections, and their matching to parton shower simulations”. In: Journal of High Energy Physics 2014.7 (2014), p. 79.
108
[25] Rikkert Frederix and Stefano Frixione. “Merging meets matching in MC@ NLO”. In: Journal of High Energy Physics 2012.12 (2012), p. 61.
[26] Johan Alwall et al. “Comparative study of various algorithms for the merg- ing of parton showers and matrix elements in hadronic collisions”. In: The European Physical Journal C 53.3 (2008), pp. 473–500.
[27] Simone Alioli et al. “A general framework for implementing NLO calcula- tions in shower Monte Carlo programs: the POWHEG BOX”. In: Journal of High Energy Physics 2010.6 (2010), p. 43.
[28] Torbjörn Sjöstrand et al. “An introduction to PYTHIA 8.2”. In: Computer physics communications 191 (2015), pp. 159–177.
[29] Vardan Khachatryan et al. “Event generator tunes obtained from under- lying event and multiparton scattering measurements”. In: The European Physical Journal C 76.3 (2016), p. 155.
[30] https://twiki.cern.ch/twiki/bin/view/CMS/ CutBasedElectronIdentificationRun2.
[31] CMS collaboration et al. “Performance of photon reconstruction and iden- tification with the CMS detector in proton-proton collisions at sqrt (s)= 8 TeV”. In: arXiv preprint arXiv:1502.02702 (2015).
[32] Rafael Teixeira de Lima. “IOP: Overview of energy reconstruction, and electron and photon performances with the CMS ECAL in Run II”. In: J. Phys.: Conf. Ser. Vol. 928. 2017, p. 012005.
[33] “Commissioning of the Particle-Flow reconstruction in Minimum-Bias and Jet Events from pp Collisions at 7 TeV”. In: (2010).
[34] https://twiki.cern.ch/twiki/bin/viewauth/CMS/ EGMSmearer.
[35] https://twiki.cern.ch/twiki/bin/viewauth/CMS/ RochcorMuon.
[36] Matteo Cacciari, Gavin P Salam, and Gregory Soyez. “The anti-kt jet clus- tering algorithm”. In: Journal of High Energy Physics 2008.04 (2008), p. 063.
[37] CMS collaboration et al. “Determination of jet energy calibration and trans- verse momentum resolution in CMS”. In: Journal of Instrumentation 6.11 (2011), P11002.
[38] Jet algorithms performance in 13 TeV data. Tech. rep. CMS-PAS-JME-16-003. Geneva: CERN, 2017. URL: http://cds.cern.ch/record/2256875.
[39] https://twiki.cern.ch/twiki/bin/viewauth/CMS/ EgammaIDRecipesRun2.
109
[40] https://twiki.cern.ch/twiki/bin/view/CMS/ MuonWorkInProgressAndPagResults.
[41] CMS Collaboration. “Measurement of differential cross sections for inclu- sive isolated-photon and photon+jets production in proton-proton colli- sions at √s = 13 TeV”. In: Eur. Phys. J. C ().
[42] Andreas Hoecker et al. “TMVA: Toolkit for Multivariate Data Analysis”. In: PoS ACAT (2007), p. 040. arXiv: physics/0703039.
[43] https://cms-hcomb.gitbook.io/combine.
[44] First results on Higgs to γγ at 13 TeV. Tech. rep. CMS-PAS-HIG-15-005.
Geneva: CERN, 2016. URL: http://cds.cern.ch/record/2140979.
[45] https://twiki.cern.ch/twiki/bin/viewauth/CMS/
ShowerShapeReweighting.
[46] Stefan Schmitt. “TUnfold: An algorithm for correcting migration effects in high energy physics”. In: JINST 7 (2012), T10003. DOI: 10.1088/1748- 0221/7/10/T10003. arXiv: 1205.6201 [physics.data-an].
[47] CMS Luminosity Measurements for the 2016 Data Taking Period. Tech. rep. CMS-PAS-LUM-17-001. Geneva: CERN, 2017. URL: https://cds.cern. ch/record/2257069.
[48] Richard D. Ball et al. “Parton distributions for the LHC Run II”. In: JHEP 04 (2015), p. 040. DOI: 10.1007/JHEP04(2015)040. arXiv: 1410.8849 [hep-ph].
[49] Jon Butterworth et al. “PDF4LHC recommendations for LHC Run II”. In: J. Phys. G43 (2016), p. 023001. DOI: 10.1088/0954-3899/43/2/023001. arXiv: 1510.03865 [hep-ph].
[50] Kallweit S. Grazzini M. and M. Wiesemann. “Fully differential NNLO computations with MATRIX”. In: Eur. Phys. J. C 78 (2018), p. 537. DOI: 10. 1140/epjc/s10052-018-5771-7. arXiv: 1711.06631 [hep-ph].
[51] Ciaran Williams John M. Campbell Tobias Neumann. “Zγ production at NNLO including anomalous couplings”. In: (2017). Submitted to JHEP. arXiv: 1708.02925v1 [hep-ph].
[52] Andrea Valassi. “Combining correlated measurements of several differ- ent physical quantities”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip- ment 500.1 (2003), pp. 391–405. DOI: http://dx.doi.org/10.1016/ S0168-9002(03)00329-2. URL: http://www.sciencedirect. com/science/article/pii/S0168900203003292.
指導教授 郭家銘(Chia-Ming Kuo) 審核日期 2019-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明