博碩士論文 101283003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.226.150.44
姓名 王仁宗(Ren-Tzong Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 N-烷氧苯基吡啶鹽之離子液晶研究
相關論文
★ 具有benzoxazole結構之無機液晶材料★ 以1,3,4-thiadiazole為架構之不對稱無機液晶材料
★ 新穎香蕉形液晶及對稱含萘環之液晶分子★ 香蕉形無機液晶
★ 具有benzoxazole結構之有機及無機液晶材料★ 以1,3,4-thiadiazole為架構之無機盤狀液晶材料
★ 以benzoxazole為架構之無機桿狀液晶★ 具有Quinoxaline結構之雙金屬無機液晶材料
★ 星型液晶材料及磷光發光材料之合成與研究★ 含pyrazole及isoxazole之有機桿狀液晶
★ 矽咔哚與矽螺旋雙笏物質之放光性質研究★ 具有Benzobisthiazoles和Benzobisoxazoles結構之盤狀液晶材料
★ 含 Benzoxazole 之對稱二聚物其奇偶效應的探討★ 以電腦模擬研究香蕉型液晶元的分子交互作用力
★ 極性取代基對於彎曲型液晶分子的影響★ 由彎曲型分子形成盤狀液晶之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 離子液晶其性質相較於傳統有機分子為極大不同,它們是由有機離子所組成,而有機結構具有無限變化意喻其為「可設計化」或「可微調化」,故離子液晶本於其獨特性質可以結合液晶(例如分子自組裝、非等向性等物理性質)與離子液體(例如離子導電性及其他等等)在近廿年來引起了相當大關注,而未來必定也預期將有爆炸性發展。
雖然第一個離子液晶即為吡啶鹽早於1938年就發表,近廿年來氮原子基礎的離子液晶研究有銨鹽、咪唑鹽、吡咯鹽、哌啶鹽、哌嗪鹽、嗎啉鹽及吡啶鹽等依然熱烈,而吡啶鹽的研究多為烷基取代吡啶鹽,雖然得知有芳香基取代可以對液晶原穩固性有幫助,但其他研究之芳香基都非取代於氮原子上。本研究以Zincke反應合成出N-芳香基取代吡啶氯鹽,然後使用甲醇為相轉移溶劑之技巧並利用皮爾森之軟硬酸鹼理論,將此吡啶氯鹽置換其他軟性陰離子對,而對此系列物質作其液晶性質之研究。
除了單鏈線形單離子吡啶鹽系列物質之液晶性質之研究外,我們亦對三鏈扇形單離子吡啶鹽系列物質,甚至於單鏈線形及三鏈扇形雙離子聯吡啶鹽系列物質進行研究。此外,我們亦對於陰離子誘導液晶性質,包括單鏈線形及三鏈扇形相對陰離子的吡啶鹽系列物質進行探討。
摘要(英) Ionic liquid crystals (ILCs) are entirely different properties from those of ordinary organic molecular compounds. They are composed of organic ions, and these organic compounds have unlimited structural variations which are “designable” or “fine-tunable”. Because ILCs’ unique properties that combine the characteristics of liquid crystals (i.e., self-assembling, anisotropic properties, etc.) with those of ionic liquids (i.e., ionic conductivities, and so forth) have been of great interest during the last two decades, we can expect explosive development in the future.
Although the first ILCs being pyridinium salts were reported in 1938, recently the fields of N-based ionic liquid crystals (i.e., Ammonium, Imidazolium, Pyrrolidinium, Piperidinium, Piperazinium, Morpholinium and Pyridinium cations) were also described with increasing interest. About pyridinium-based ILCs, many works are focusing on N-alkylpyridinium salts. Further the aryl- substituted pyridinium cations can make the rigid mesogens found in some works, but N-aryl substituents. So we synthesized the N-arylpyridinium chlorides via Zincke reaction. And we using methanol as a phase-transfer solvent replace the chloride anion into another soft anion by Pearson’s HSAB theory. Then we will describe that ILCs’ characteristics of these type substituents.
In addition to those N-(mono-alkoxyaryl)-pyridinium salts of linear mesogens, we made N-(tri-alkoxyaryl)-pyridinium salts of tapered mesogens, N-(mono- alkoxyaryl)-bipyridinium salts of linear mesogens, and N-(tri-alkoxyaryl)- bipyridinium salts of fan-shaped mesogens. Furthermore, we also concerned about the anion-induced mesogens of pyridinium salts.
關鍵字(中) ★ 離子液晶
★ 紫精
★ 聚集誘導放光
★ 楔形分子
★ 苯基吡啶鹽
★ 二苯基聯吡啶鹽
關鍵字(英) ★ ionic liquid crystals
★ viologen
★ aggregation-induced emission
★ wadge-shaped mesogens
★ phenylpyridiniums
★ diphenylbipyridiniums
論文目次 中文摘要…………………………………………………………………… i
英文摘要…………………………………………………………………… ii
誌謝………………………………………………………………………… iii
目錄………………………………………………………………………… iv
圖目錄……………………………………………………………………… vi
表目錄……………………………………………………………………… x
式目錄……………………………………………………………………… xi
符號說明…………………………………………………………………… xii
第一章 緒論 ……………………………………………………………… 1
1-1 液晶分類 ………………………………………………………… 1
1-2 離子液晶 ………………………………………………………… 3
1-3 吡啶鹽離子液晶……………………………………………… 5
第二章 線形單離子吡啶鹽液晶研究……………………… 9
2-1 研究動機 ………………………………………………………… 9
2-2 線形單離子吡啶鹽的合成…………………………… 10
2-3 結果與討論 ……………………………………………………… 12
2-4 結論 ……………………………………………………………… 41
第三章 線形雙離子吡啶鹽液晶研究……………………… 42
3-1 研究動機 ………………………………………………………… 42
3-2 線形雙離子吡啶鹽的合成…………………………… 44
3-3 結果與討論 ……………………………………………………… 46
3-4 結論 ……………………………………………………………… 68
第四章 扇形單、雙離子吡啶鹽液晶研究……………… 70
4-1 研究動機 ………………………………………………………… 70
4-2 扇形單、雙離子吡啶鹽的合成………………… 71
4-3 結果與討論 ……………………………………………………… 74
4-4 結論 ……………………………………………………………… 92
第五章 總結 ……………………………………………………………… 94
第六章 實驗部份 ………………………………………………………… 98
6-1 實驗藥品 ………………………………………………………… 98
6-2 實驗儀器 ………………………………………………………… 99
6-3 合成步驟及分析數據…………………………………… 101
參考文獻…………………………………………………………………… 142
附錄………………………………………………………………………… 153
附錄-1 附圖 ……………………………………………………………… 157
附錄-2 附表 ……………………………………………………………… 202
參考文獻 1 L. M. Blinov, Structure and Properties of Liquid Crystals, Springer Science + Business Media B.V. 2011.
2 G. Friedel, Ann. Phys., 1922, 9, 273-474.
3 K. Goossens, K. Lava, C. W. Bielawski, K. Binnemans, Chem. Rev., 2016, 116, 4643-4807.
4 N. Garti, D. Libster and A. Aserin, Food Funct., 2012, 3, 700-713.
5 G. A. Knight and B. D. Shaw, J. Chem. Soc., 1938, 682-683.
6 H. Ohno, Electrochemical Aspects of Ionic Liquids, John Wiley & Sons, Inc., Hoboken, New Jersey, 2nd Ed., 2011.
7 K. Binnemans, Chem. Rev. 2005, 105, 4148-4204.
8 P. A. Hunt, C. R. Ashworth and R. P. Matthews, Chem. Soc. Rev., 2015, 44, 1257-1288.
9 J. H. Olivier, F. Camerel, G. Ulrich, J. Barberá and R. Ziessel, Chem. Eur. J., 2010, 16, 7134-7142.
10 M. Veber and G. Berruyer, Liq. Cryst., 2000, 27, 671-676.
11 K. Tanabe, Y. Suzui, M. Hasegawa and T. Kato, J. Am. Chem. Soc., 2012, 134, 5652-5661.
12 X. Cheng, X. Bai, S. Jing, H. Ebert, M. Prehm and C. Tschierske, Chem. Eur. J., 2010, 16, 4588-4601.
13 B. Soberats, M. Yoshio, T. Ichikawa, S. Taguchi, H. Ohno and T. Kato, J. Am. Chem. Soc., 2013, 135, 15286-15289.
14 K. Goossens, S. Wellens, K. Van Hecke, L. Van Meervelt, T. Cardinaels and K. Binnemans, Chem. Eur. J., 2011, 17, 4291-4306.
15 F. Artzner, M. Verber, M. Clerc and A. M. Levelut, Liq. Cryst., 1997, 23, 27-33.
16 M. M. Neidhardt, M. Wolfrum, S. Beardsworth, T. Wӧhrle, W. Frey, A. Baro, C. Stubenrauch, F. Giesselmann and S. Laschat, Chem. Eur. J., 2016, 22, 1-12.
17 F. Neve, O. Francescangeli, A. Crispini and J. Charmant, Chem. Mater., 2001, 13, 2032-2041.
18 L. M. Antill, M. M. Neidhardt, J. Kirres, S. Beardsworth, M. Mansueto, A. Baro and S. Laschat, Liq. Cryst., 2014, 41, 976-985.
19 G. Saielli, T. Margola and K. Satoh, Soft Matter, 2017, 13, 5204-5213.
20 K. Ohta, T. Sugiyama and T. Nogami, J. Mater. Chem., 2000, 10, 613-616.
21 T. Mihelj, J. Popović , Ž. Skoko and V. Tomašić, Thermochim. Acta, 2014, 591,119-129.
22 J. D. Holbrey and K. R. Seddon, J. Chem. Soc., Dalton Trans., 1999, 2133-2139.
23 P. H. J. Kouwer and T. M. Swager, J. Am. Chem. Soc., 2007, 129, 14042-14052.
24 R. Rondla, J. C. Y. Lin, C. T. Yang and I. J. B. Lin, Langmuir, 2013, 29, 11779-11785.
25 S. P. Ji, M. Tang, L. He and G. H. Tao, Chem. Eur. J., 2013, 19, 4452-4461.
26 V. Cîrcu, Ionic Liquid Crystals Based on Pyridinium Salts. In Progress and Developments in Ionic Liquids, (Ed.: S. Handy), InTech, 2017, DOI: 10.5772/65757.
27 I. Sánchez, J. A. Campo, J. V. Heras, M. R. Torres and M. Cano, J. Mater. Chem., 2012, 22, 13239-13251.
28 K. Ma, B. S. Somashekhar, G. A. N. Gowda, C. L. Khetrapal and R. G. Weiss, Langmuir, 2008, 24, 2746-2758.
29 M. Butschies, W. Frey and S. Laschat, Chem. Eur. J., 2012, 18, 3014-3022.
30 K. V. Axenov and S. Laschat, Materials, 2011, 4, 206-259.
31 A. A. Fernandez and P. H. J. Kouwer, Int. J. Mol. Sci., 2016, 17, 731-761.
32 T. Kato, Angew. Chem., 2010, 122, 8019-8021.
33 A. Abate, A. Petrozza, G. Cavallo, G. Lanzani, F. Matteucci, D. W. Bruce, N. Houbenov, P. Metrangolo and G. Resnati, J. Mater. Chem. A, 2013, 1, 6572-6578.
34 S. Tan, C. Wang and Y. Wu, J. Mater. Chem. A, 2013, 1, 1022-1025.
35 R. Kawano, Md. K. Nazeeruddin, A. Sato, M. Grätzel and M. Watanabe, Electrochem. Commun., 2007, 9, 1134-1138.
36 H. Cao-Cen, J. Zhao, L. Qiu, D. Xu, Q. Li, X. Chen and F. Yan, J. Mater. Chem., 2012, 22, 12842-12850.
37 W. S. Chi, H. Jeon, S. J. Kim, D. J. Kim and J. H. Kim, Macromol. Res., 2013, 21, 315-320.
38 Y. Abu-Lebdeh, A. Abouimrane, P. J. Alarco and M. Armand, J. Power Sources, 2006, 154, 255-261.
39 G. Klimusheva, T. Mirnaya and Y. Garbovskiy, Liq. Cryst. Rev., 2015, 3, 28-57.
40 L. Wang, H. K. Bisoyi, Z. Zheng, K. G. Gutierrez-Cuevas, G. Singh, S. Kumar, T. J. Bunning and Q. Li, Mater. Today, 2017, 20, 230-237.
41 L. Wang and Q. Li, Adv. Funct. Mater., 2016, 26, 10-28.
42 W. Dobbs, B. Heinrich, C. Bourgogne, B. Donnio, E. Terazzi, M. E. Bonnet, F. Stock, P. Erbacher, A. L. Bolcato-Bellemin and L. Douce, J. Am. Chem. Soc., 2009, 131, 13338-13346.
43 A. Safavi and M. Tohidi, J. Phys. Chem. C, 2010, 114, 6132-6140.
44 N. V. Shvedene, O. A. Avramenko, V. E. Baulin, L. G. Tomilova and I. V. Pletnev, Electroanalysis, 2011, 23, 1067-1072.
45 A. Beneduci, S. Cospito, M. La Deda, L. Veltri and G. Chidichimo, Nat. Commun., 2014, 5, 3105-3112.
46 S. Cospito, A. Beneduci, L. Veltri, M. Salamonczyk and G. Chidichimo, Phys. Chem. Chem. Phys., 2015, 17, 17670-17678.
47 M. Henmi, K. Nakatsuji, T. Ichikawa, H. Tomioka, T. Sakamoto, M. Yoshio and T. Kato, Adv. Mater., 2012, 24, 2238-2241.
48 C. G. Bazuin, D. Guillon, A. Skoulios and J. F. Nicoud, Liq. Cryst., 1986, 1, 181-188.
49 R. Somashekar, Mol. Cryst. Liq. Cryst., 1987, 146, 225-233.
50 J. J. H. Nusselder, J. B. F. N. Engberts and H. A. Van Doren, Liq. Cryst., 1993, 13, 213-225.
51 M. Tabrizian, A. Soldera, M. Couturier and C. G. Bazuin, Liq. Cryst., 1995, 18, 475-482.
52 D. P. Jackson and B. M. Fung, Mol. Cryst. Liq. Cryst., 1997, 303, 73-78.
53 Y. Haramoto, Y. Akiyama, R. Segawa, S. Ujiie and M. Nanasawa, J. Mater. Chem., 1998, 8, 275-276.
54 E. J. R. Sudhölter, J. B. F. N. Engberts and W. H. de Jeu, J. Phys. Chem., 1982, 86, 1908-1913.
55 D. W. Bruce and S. Estdale, Liq. Cryst., 1995, 19, 301-305.
56 C. Cruz, B. Heinrich, A. C. Ribeiro, D. W. Bruce and D. Guillon, Liq. Cryst., 2000, 27, 1625-1631.
57 C. M. Gordon, J. D. Holbrey, A. R. Kennedy and K. R. Seddon, J. Mater. Chem., 1998, 8, 2627-2636.
58 F. Neve, A. Crispini and S. Armentano, Chem. Mater., 1998, 10, 1904-1913.
59 T. Mihelj and V. Tomašić, J. Disper. Sci. Technol., 2014, 35, 581-592.
60 Name reactions in heterocyclic chemistry (Ed.: J. J. Li), John Wiley & Sons, Inc., Hoboken, New Jersey. 2005, pp 355-373.
61 D. Ster, U. Baumeister, J. L. Chao, C. Tschierske and G. Israel, J. Mater. Chem., 2007, 17, 33933400.
62 J. Pecyna, D. Pociecha and P. Kaszyński, J. Mater. Chem. C, 2014, 2, 1585-1591.
63 J. Pecyna, B. Ringstrand, S. Domagała, P. Kaszyński and K. Woźniak, Inorg. Chem., 2014, 53, 12617-12626.
64 T. D. Michels, J. U. Rhee and C. D. Vanderwal, Org. Lett., 2008, 10, 4787-4790.
65 N. Zeghbib, P. Thelliere, M. Rivard and T. Martens, J. Org. Chem., 2016, 81, 3256-3262.
66 T. Kuwabara, X. Tao, H. Guo, M. Katsumata and H. Kurokawa, Tetrahedron, 2016, 72, 1069-1075.
67 H. M. Kuo, W. P. Ko, Y. T. Hsu, G. H. Lee and C. K. Lai, Tetrahedron, 2016, 72, 6321-6333.
68 B. Clare, A. Sirwardana and D. R. MacFarlane, Synthesis, Purification and Characterization of Ionic Liquids. In Ionic Liquids, (Ed.: B. Kirchner), Springer, Heidelberg, 2009, pp. 7.
69 E. Alcalde, I. Dinarès, A. Ibáñes and N. Mesquida, Molecules, 2012, 17, 4007-4027.
70 J. S. Wilkes and M. J. Zaworotko, J. Chem. Soc., Chem. Commun., 1992, 965-967.
71 J. M. Pringle, J. Golding, C. M. Forsyth, G. B. Deacon, M. Forsyth and D. R. MacFarlane, J. Mater. Chem., 2002, 12, 3475-3480.
72 T. Burankova, E. Reichert, V. Fossog, R. Hempelmann and J. P. Embs, J. Mol. Liq., 2014, 192, 199-207.
73 R. D. Shannon, Acta Cryst., 1976, A32, 751767.
74 Y. Iwadate, K. Kawamura, K. Igarashi and J. Mochinaga, J. Phys. Chem., 1982, 86, 5205-5208.
75 H. D. B. Jenkins, H. K. Roobottom, J. Passmore and L. Glasser, Inorg. Chem., 1999, 38, 3609-3620.
76 C.W. Liew and S. Ramesh, Materials, 2014, 7, 4019-4033.
77 D. R. MacFarlane, M. Forsyth, E. I. Izgorodina, A. P. Abbott, G. Annat and K. Fraser, Phys. Chem. Chem. Phys., 2009, 11, 4962-4967.
78 M. Butschies, S. Sauer, E. Kessler, H.U. Siehl, B. Claasen, P. Fischer, W. Frey and S. Laschat, ChemPhysChem, 2010, 11, 3752-3765.
79 Y. V. Nelyubina, A. S. Shaplov, E. I. Lozinskaya, M. I. Buzin, and Y. S. Vygodskii, J. Am. Chem. Soc., 2016, 138, 10076-10079.
80 M. Yoshio, T. Ichikawa, H. Shimura, T. Kagata, A. Hamasaki, T. Mukai, H. Ohno and T. Kato, Bull. Chem. Soc. Jpn., 2007, 80, 1836-1841.
81 Sánchez, J. A. Campo, J. V. Heras, M. R. Torres and M. Cano, J. Mater. Chem., 2012, 22, 13239-13251.
82 J. Pastor, C. Cuerva, J. A. Campo, R. Schmidt, M. R. Torres and M. Cano, Materials, 2016, 9, 360-377.
83 M. J. Pastor, I. Sánchez, J. A. Campo, R. Schmidt and M. Cano, Materials, 2018, 11, 548-568.
84 K. Yamamura, Y. Okada, S. Ono, K. Kominami and I. Tabushi, Tetrahedron Lett., 1987, 28, 6475-6478.
85 M. Kijima, K. Setoh and H. Shirakawa, Mol. Cryst. Liq. Cryst., 2001, 364, 911-918.
86 P. K. Bhowmik, H. Han, J. J. Cebe, R. A. Burchett, B. Acharya and S. Kumar, Liq. Cryst., 2003, 30, 1433-1440.
87 W.W. Porter III, T. P. Vaid and A. L. Rheingold, J. Am. Chem. Soc., 2005, 127, 16559-16566.
88 P. K. Bhowmik, H. Han, I. K. Nedeltchev and J. J. Cebe, Mol. Cryst. Liq. Cryst., 2004, 419, 27-46.
89 P. K. Bhowmik, H. Han, I. K. Ndedeltchev, J. J. Cebe, S. W. Kang and S. Kumar, Liq. Cryst.,2006, 33, 891-906.
90 K. Tanabe, T. Yasuda, M. Yoshio and T. Kato, Org. Lett., 2007, 9, 4271-4274.
91 V. Causin and G. Saielli, J. Mol. Liq., 2009, 145, 41-47.
92 V. Causin and G. Saielli, J. Mater. Chem., 2009, 19, 9153-9162.
93 A. Bordyuh, Y. Garbovskiy, S. Bugaychuk, G. Klimusheva and V. Reshetnyak, Mol. Cryst. Liq. Cryst., 2009, 508, 296-308.
94 S. Asaftei, M. Ciobanu, A. M. Lepadatu, E. Song and U. Beginn, J. Mater. Chem., 2012, 22, 14426-14437.
95 M. Bonchio, M. Carraro, G. Casella, V. Causin, F. Rastrelli and G. Saielli, Phys. Chem. Chem. Phys., 2012, 14, 2710-2717.
96 G. Casella, V. Causin, F. Rastrelli and G. Saielli, Phys. Chem. Chem. Phys., 2014, 16, 5048-5051.
97 S. Cospito, A. Beneduci, L. Veltri, M. Salamonczyk and G. Chidichimo, Phys. Chem. Chem. Phys., 2015, 17, 17670-17678.
98 A. Beneduci, S. Cospito, D. Imbardelli, B. C. De Simone and G. Chidichimo, Mol. Cryst. Liq. Cryst., 2015, 610, 108-115.
99 H. Tahara, Y. Furue, C. Suenaga and T. Sagara, Cryst. Growth Des., 2015, 15, 4735-4740.
100 G. Casella, V. Causin, F. Rastrelli and G. Saielli, Liq. Cryst., 2016, 43, 1161-1173.
101 T. Kobayashi and T. Ichikawa, Materials, 2017, 10, 1243-1251.
102 P. K. Bhowmik, S. T. Killarney, J. R. A. Li, J. J. Koh, H. Han, L. Sharpnack, D. M. Agra-Kooijman, M. R. Fisch and S. Kumar, Liq. Cryst., 2018, 45, 872-885.
103 Thermochromic and Thermotropic Materials, eds. A. Seeboth and D. Lötzsch, Pan Stanford Publishing Pte. Ltd., Singapore, 2014.
104 A. N. Woodward, J. M. Kolesar, S. R. Hall, N.-A. Saleh, D. S. Jones and M. G. Walter, J. Am. Chem. Soc., 2017, 139, 8467-8473.
105 Y. Alesanco, A. Viñuales, J. Palenzuela, I. Odriozola, G. Cabañero, J. Rodriguez and R. Tena-Zaera, ACS Appl. Mater. Interfaces, 2016, 8, 14795-14801.
106 H. M. Osorio, S. Catarelli, P. Cea, J. B. G. Gluyas, F. Hartl, S. J. Higgins, E. Leary, P. J. Low, S. Martín, R. J. Nichols, J. Tory, J. Ulstrup, A. Vezzoli, D. C. Milan and Q. Zeng, J. Am. Chem. Soc., 2015, 137, 14319-14328.
107 D. Zhao, F. Fan, J. Cheng, Y. Zhang, K. S. Wong, V. G. Chigrinov, H. S. Kwok, L. Guo and B. Z. Tang, Adv. Optical Mater., 2015, 3, 199-202.
108 H. C. Lu, S. Y. Kao, H. F. Yu, T. H. Chang, C. W. Kung and K. C. Ho, ACS Appl. Mater. Interfaces, 2016, 8, 30351-30361.
109 H. Tahara, R. Baba, K. Iwanaga, T. Sagara and H. Murakami, Chem. Commun., 2017, 53, 2455-2458.
110 Y. Wang, Y. Liao, C. P. Cabry, D. Zhou, G. Xie, Z. Qu, D. W. Bruce and W. Zhu, J. Mater. Chem. C, 2017, 5, 3999-4008.
111 K. Sato, T. Yamasaki, T. Mizuma, K. Oyaizu and H. Nishide, J. Mater. Chem. A, 2016, 4, 3249-3252.
112 B. Pradhan, M. Gupta, S. K. Pal and A. S. Achalkumar, J. Mater. Chem. C, 2016, 4, 9669-9673.
113 J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang and B. Z. Tang, Adv. Mater., 2014, 26, 5429-5479.
114 E. Marotta, F. Rastrelli and G. Saielli, J. Phys. Chem. B, 2008, 112, 16566-16574.
115 Y. Ren, W. H. Kan, M. A. Henderson, P. G. Bomben, C. P. Berlinguette, V. Thangadurai and T. Baumgartner, J. Am. Chem. Soc., 2011, 133, 17014-17026.
116 O. V. Gutov, E. B. Rusanov, A. A. Kudryavtsev, S. G. Garasevych, O. V. Slobodyanyuk, V. M. Yashchuk and A. N. Chernega, CrystEngComm, 2011, 13, 1373-1377.
117 K. Tanabe, D. Kodama, M. Hasegawa and T. Kato, Chem. Lett., 2014, 43, 184-186.
118 Y. Xiao, S. H. Wang, Y. P. Zhao, F. K. Zheng and G. C. Guo, CrystEngComm, 2016, 18, 2524-2531.
119 M. Nanasawa, M. Miwa, M. Hirai and T. Kuwabara, J. Org. Chem., 2000, 65, 593-595.
120 Y. V. Nelyubina, A. S. Shaplov, E. I. Lozinskaya, M. I. Buzin and Y. S. Vygodskii, J. Am. Chem. Soc., 2016, 138, 10076-10079.
121 R. R. Gagné, C. A. Koval and G. C. Lisensky, Inorg. Chem., 1980, 19, 2854-2855.
122 A. Lewandowski, L. Waligora and M. Galinski, Electroanal., 2009, 21, 2221-2227.
123 L. Chen, F. Hartl, H. M. Colquhoun and B. W. Greenland, Tetrahedron Lett., 2017, 58, 1859-1862.
124 Y. Tanaka and T. Sagara, J. Electroanal. Chem., 2008, 619, 65-74.
125 T. Higashi and T. Sagara, Langmuir, 2013, 29, 11516-11524.
126 T. G. Zhan, T. Y. Zhou, F. Lin, L. Zhang, C. Zhou, Q.-Y. Qi, Z. T. Li and X. Zhao, Org. Chem. Front., 2016, 3, 1635-1645.
127 S. Chen and S. H. Eichhorn, Isr. J. Chem., 2012, 52, 830-843.
128 D. T. Do and A. R. Schmitzer, ChemistrySelect, 2016, 1, 2448-2453.
129 A. Panǎ, M. Ilis, T. Staicu, I. Pasuk and V. Cîrcu, Liq. Cryst., 2016, 43, 381-392.
130 K. Tanabe, T. Yasuda, M. Yoshio and T. Kato, Org. Lett., 2007, 9, 4271-4274.
131 N. N. Al-Mohammed, R. S. D. Hussen, Y. Alias and Z. Abdullah, RSC Adv., 2015, 5, 2869-2881.
132 S. K. Gupta and S. Kumar, Liq. Cryst., 2012, 39, 1443-1449.
133 S. Asaftei, M. Ciobanu, A. M. Lepadatu, E. Song and U. Beginn, J. Mater. Chem., 2012, 22, 14426-14437.
134 M. A. Alam, J. Motoyanagi, Y. Yamamoto, T. Fukushima, J. Kim, K. Kato, M. Takata, A. Saeki, S. Seki, S. Tagawa and T. Aida, J. Am. Chem. Soc., 2009, 131, 17722-17723.
135 T. Kato, N. Mizoshita and K. Kishimoto, Angew. Chem. Int. Ed., 2006, 45, 38-68.
136 M. A. Shcherbina, A. V. Bakirov, L. Yan, U. Beginn, X. Zhu, M. Möller and S. N. Chvalun, Mendeleev Commun., 2015, 25, 142-144.
137 L. M. Antill, M. M. Neidhardt, J. Kirres, S. Beardsworth, M. Mansueto, A. Baro and S. Laschat, Liq. Cryst., 2014, 41, 976-985.
138 B. Soberats, M. Yoshio, T. Ichikawa, X. Zeng, H. Ohno, G. Ungar and T. Kato, J. Am. Chem. Soc., 2015, 137, 13212-13215.
139 A. Yildirim, P. Szymoniak, K. Sentker, M. Butschies, A. Bühlmeyer, P. Huber, S. Laschat and A. Schönhals, Phys. Chem. Chem. Phys., 2018, 20, 5626-5635.
140 M. Yoshio, T. Mukai, H. Ohno and T. Kato, J. Am. Chem. Soc., 2004, 126, 994-995.
141 M. Yoshio, T. Ichikawa, H. Shimura, T. Kagata, A. Hamasaki, T. Mukai, H. Ohno and T. Kato, Bull. Chem. Soc. Jpn., 2007, 80, 1836-1841.
142 K. Takagi, K. Yamauchi, S. Kubota, S. Nagano, M. Hara, T. Seki, K. Murakami, Y. Ooyama and J. Ohshita, RSC Adv., 2016, 6, 9152-9159.
143 A. Panǎ, F. L. Badea, M. Ilis, T. Staicu, M. Micutz, I. Pasuk and V. Cîrcu, J. Mol. Struct., 2015, 1083, 245-251.
144 P. Bonhôte, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Grätzel, Inorg. Chem., 1996, 35, 1168-1178.
145 T. Kato, Science, 2002, 295, 2414-2418.
146 U. Beginn, L. Yan, S. N. Chvalun, M. A. Shcherbina, A. Bakirov and M. Möller, Liq. Cryst., 2008, 35, 1073-1093.
指導教授 賴重光(Chung K. Lai) 審核日期 2018-10-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明