博碩士論文 101284005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.146.221.204
姓名 吳亭邑(Ting-Yi Wu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱
(Innovative Mind-Body Intervention Day Easy Exercise Increases Peripheral Blood CD34+ Cells and Attenuates Back Pain in Adults)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 中文摘要

以藥物和外科手術為主要的臨床醫療經常引起副作用及後遺症。在這樣的背景下,另類療法開始被探討運用的可行性並嘗試降低病人的不適感及療效。身心干預(Mind–body interventions (MBIs))是指所有可以在心理潛意識的思考(放鬆及降低壓力)及運用技巧來建立身體機能之間的關係(利用氣、緩慢運動及呼吸)。MBIs可以從冥想開始讓精神放鬆、從特定的呼吸技巧讓肌肉鬆弛、在經過特定動作技巧引導氣的運行。MBIs的種類相當廣泛,包括太極拳、瑜珈及氣功等。先前研究發現MBIs跟免疫系統、內分泌及神經系統調控有關。但精確的機制還不清楚。
雖然MBIs(例如太極拳和瑜伽)在精神,身體健康和臨床的運用具有顯著益處,但是MBIs的推廣受到多種條件的限制。例如MBIs練習的時間受到嚴格的限制,學習難度高,練習場所的要求,以及長期不間斷的練習才能獲得有效的成果。為了更進一步推廣MBIs給社會大眾,本研究參考太極拳、瑜珈及氣功的原理設計一組學習簡單、練習時間短且具有增進健康效果的運動。此運動稱為大易拳(Day easy exercise, DEE)。MBIs的實踐者認為太極拳及氣功可以長壽及養顏美容。
最新的研究顯示太極拳可以透過減少交感神經系統(SNS)活動並增加周邊血液的CD34+細胞數量。CD34+是造血幹細胞的標記。造血幹細胞在骨髓及血液中遊走並會隨者年紀增長而減少數量。因此造血幹細胞數量與衰老有相關性。背痛是現代人常見的問題,尤其是勞力工作者,女性及長時間坐姿不良。背痛無法改善的話會嚴重影響生活品質。關節的活動程度差容易造成骨骼肌肉疼痛。然而骨骼肌肉疼痛是形成背痛的主要原因。骨骼肌肉疼痛的患者常有發炎因子過度表現及免疫系統失衡的現象。研究顯示細胞激素Tumor Necrosis Factor-α (TNF-α),Interleukin-6 (IL-6)或C reactive protein (CRP)等高度表現會誘導骨骼肌肉疼痛的惡化。但是輔助T細胞(helper T cell)及IL-2高度表現可以降低骨骼肌肉疼痛。
本研究計畫測試DEE練習對於身體健康的功效。我們計畫測試: 1. DEE實踐3個月後對於周邊血液的CD34+細胞數量的影響。2. DEE實踐3個月後對於背痛的影響。經過篩選後分別有22位DEE練習組的參與者及22位控制組的參與者。在測試CD34+細胞數量的實驗中,以30歲為基準將DEE練習組及控制組分別分成年輕及中年組別。我們的結果顯示不管是年輕或中年組別,DEE實踐都可以增加CD34+細胞數量。在測試DEE實踐改善背痛的實驗中,22位DEE練習組的參與者呈現IL-2及輔助T細胞增加的情況。此外生活品質、關節活動及骨骼肌肉疼痛都獲得改善。
我們的結果顯示DEE對於延遲衰老及改善背痛或生活品質具有良好效果。我們未來計畫更進一步測試DEE對於臨床醫療的效果。DEE與其他MBIs相比具有容易學習、運動時間短、良好功效及需要小型場地。因此DEE適合推廣於現今社會。
摘要(英) Abstract

The side effects and sequelae caused by drugs and surgical procedures often bring great pain to patients. Psychosomatic intervention (MBI) refers to all mental and subconscious thoughts (relaxation and stress reduction), as well as the use of technology to establish the relationship between bodily functions (qi, slow movement and breathing). The types of MBI are very wide, including Tai Chi, Yoga and Qigong. Previous studies have found that MBI is related to immune system, endocrine and nervous system regulation. But the exact mechanism is unclear.
Although MBI (such as Tai Chi and Yoga) has significant benefits for mental, physical health and clinical use, the promotion of MBI is restricted by many conditions. For example, MBI′s practice time is strictly limited, the learning difficulty is high, the requirements for the practice place are high, and long-term uninterrupted practice can obtain effective results. In order to further promote MBI to the public, this study refers to the principles of Tai Chi, Yoga and Qigong, and designed a set of simple and easy-to-learn exercises. This sport is called simple exercise (DEE). The latest research shows that Tai Chi can increase the number of CD34 + cells in the surrounding blood. CD34+ is a marker of hematopoietic stem cells and decreases with age. Therefore, the number of hematopoietic stem cells is related to aging. Back pain is a common problem among modern people, especially workers, women and long-term bad postures. Poor joint movement can easily cause musculoskeletal pain. However, musculoskeletal pain is the main cause of back pain. Patients suffering from musculoskeletal pain usually have symptoms of over-expressed inflammatory factors and immune system imbalance. Studies have shown that C-reactive protein (CRP) can cause worsening of musculoskeletal pain. However, high levels of helper T cells and IL-2 can reduce musculoskeletal pain.
The research project aims to test the effects of DEE exercise on physical health. We plan to test: 1. After 3 months of practice, the effect of DEE on the number of CD34+ cells in peripheral blood. 2. After 3 months of practice, the effect of DEE on back pain. After screening, there were 22 participants in the DEE practice group and 22 participants in the control group. In the experiment to test the number of CD34+ cells, the DEE training group and the control group were divided into young and middle-aged groups based on the age of 30. Our results show that DEE exercise can increase the number of CD34+ cells, regardless of whether it is young or middle-aged. In an experiment that tested DEE exercises to improve back pain, 22 participants in the DEE exercise group showed increased IL-2 and helper T cells. In addition, quality of life, joint mobility and skeletal muscle pain are improved.
Our results showed that DEE has a good effect on delaying aging and improving back pain or quality of life. We plan to further test the impact of DEE on clinical medicine in the future. Compared with other MBIs, DEE has the advantages of being easy to learn, short exercise time, good curative effect and requiring a smaller space. Therefore, DEE is suitable for promotion in today′s society.
關鍵字(中) ★ 大易拳
★ 身心靈療法
★ 造血幹細胞
★ 背痛
關鍵字(英) ★ Day Easy Exercise
★ Mind-Body Intervention
★ Cd34+ Cells
★ Back Pain
論文目次 Table of contents
中文摘要 i
Abstract iii
致謝詞 v
Abbreviation vi
Table of contents vii
List of Figures and Tables x

Chapter 1 General Introduction 1
1-1 Mind-body interventions (MBIs) 2
1-2 Meditation 2
1-3 Relaxation and breathing techniques 3
1-4 Tai Chi 4
1-5 Yoga 5
1-6 Qigong 6
1-7 Biofeedback 7
1-8 Day easy exercise (DEE) 7

Chapter 2 Materials and Methods 10
2-1 Study design and participant recruitment 11
2-2 Blood sample collection and lipid profile 12
2-3 DEE protocol 13
2-4 Musculoskeletal pain scale 14
2-5 Quality of life scale 14
2-6 Activity of neck and waist 15
2-7 Blood sampling and detection of immune cells and cytokine 15
2-8 Statistical Analysis 16
Chapter 3 DEE increases peripheral blood CD34+ cells 17
3-1 Introduction 18
3-1-1 Aging 18
3-1-2 MBIs, stress and aging 18
3-1-3 Hematopoietic stem cells (HSCs) and aging 19
3-2 Results 21
3-2-1 Baseline characteristics and plasma lipid levels by study group 21
3-2-2 Characteristics of DEE 23
3-2-3 Effects of DEE exercise on the number of CD34+, T and B cells in peripheral blood 24

Chapter 4 DEE attenuates back pain 35
4-1 Introduction 36
4-1-1 Back pain (BP) 36
4-1-2 Interleukin 2 (IL-2) and C-Reactive protein (CRP) 36
4-1-3 BP and inflammation 38
4-1-4 BP and MBIs 40
4-2 Results 41
4-2-1 DEE Improves Quality of Life, Relieves Musculoskeletal Pain and Increases Joint Mobility 41
4-2-2 DEE Regulates Inflammation-regulating Cytokines in the Circulation 42
4-2-3 Effect of DEE on Number of Immune Cells 42

Chapter 5 Discussions and Conclusion 49

Chapter 6 References 58
Appendix 79
參考文獻 [1] P.S.Adusumilli, L.Ben-Porat, M.Pereira, D.Roesler, I.M.Leitman, The prevalence and predictors of herbal medicine use in surgical patients, J. Am. Coll. Surg. 198 (2004) 583–590. doi:10.1016/j.jamcollsurg.2003.11.019.
[2] S.Á.Soós, N.Jeszenõi, K.Darvas, L.Harsányi, Complementary and alternative medicine use in surgical patients, Orv. Hetil. 157 (2016) 1483–1488. doi:10.1556/650.2016.30543.
[3] L.L.Everett, P.K.Birmingham, G.D.Williams, B.R.Brenn, J.H.Shapiro, Herbal and homeopathic medication use in pediatric surgical patients, Paediatr. Anaesth. 15 (2005) 455–460. doi:10.1111/j.1460-9592.2005.01487.x.
[4] J.Pretty, J.Barton, Nature-based interventions and mind–body interventions: Saving public health costs whilst increasing life satisfaction and happiness, Int. J. Environ. Res. Public Health. 17 (2020) 1–23. doi:10.3390/ijerph17217769.
[5] M.Minen, S.Jinich, G.Vallespir Ellett, Behavioral Therapies and Mind-Body Interventions for Posttraumatic Headache and Post-Concussive Symptoms: A Systematic Review, Headache. 59 (2019) 151–163. doi:10.1111/head.13455.
[6] I.Buric, M.Farias, J.Jong, C.Mee, I.A.Brazil, What is the molecular signature of mind-body interventions? A systematic review of gene expression changes induced by meditation and related practices, Front. Immunol. 8 (2017). doi:10.3389/fimmu.2017.00670.
[7] C.Fulwiler, J.A.Brewer, S.Sinnott, E.B.Loucks, Mindfulness-Based Interventions for Weight Loss and CVD Risk Management, Curr. Cardiovasc. Risk Rep. 9 (2015). doi:10.1007/s12170-015-0474-1.
[8] D.S.Black, G.M.Slavich, Mindfulness meditation and the immune system: a systematic review of randomized controlled trials, Ann. N. Y. Acad. Sci. 1373 (2016) 13–24. doi:10.1111/nyas.12998.
[9] R.Chaix, M.Fagny, M.Cosin-Tomás, M.Alvarez-López, L.Lemee, B.Regnault, R.J.Davidson, A.Lutz, P.Kaliman, Differential DNA methylation in experienced meditators after an intensive day of mindfulness-based practice: Implications for immune-related pathways, Brain. Behav. Immun. 84 (2020) 36–44. doi:10.1016/j.bbi.2019.11.003.
[10] S.Gautam, M.Tolahunase, U.Kumar, R.Dada, Impact of yoga based mind-body intervention on systemic inflammatory markers and co-morbid depression in active Rheumatoid arthritis patients: A randomized controlled trial, Restor. Neurol. Neurosci. 37 (2019) 41–59. doi:10.3233/RNN-180875.
[11] D.I.Galper, A.G.Taylor, D.J.Cox, Current status of mind-body interventions for vascular complications of diabetes, Fam. Community Heal. 26 (2003) 34–40. doi:10.1097/00003727-200301000-00005.
[12] E.H.Kozasa, H.Hachul, C.Monson, L.Pinto, M.C.Garcia, L.E.D.A.M.Mello, S.Tufik, Mind-body interventions for the treatment of insomnia: A review, Rev. Bras. Psiquiatr. 32 (2010) 437–443. doi:10.1590/S1516-44462010000400018.
[13] S.Wemmert, R.Ketter, J.Rahnenführer, N.Beerenwinkel, M.Strowitzki, W.Feiden, C.Hartmann, T.Lengauer, F.Stockhammer, K.D.Zang, E.Meese, W.I.Steudel, A.VonDeimling, S.Urbschat, Patients with high-grade gliomas harboring deletions of chromosomes 9p and 10q benefit from temozolomide treatment, Neoplasia. 7 (2005) 883–893. doi:10.1593/neo.05307.
[14] H.Gaitzsch, J.Benard, J.Hugon-Rodin, L.Benzakour, I.Streuli, The effect of mind-body interventions on psychological and pregnancy outcomes in infertile women: a systematic review, Arch. Womens. Ment. Health. 23 (2020) 479–491. doi:10.1007/s00737-019-01009-8.
[15] S.Y.Tsai, Effect of yoga exercise on premenstrual symptoms among female employees in Taiwan, Int. J. Environ. Res. Public Health. 13 (2016). doi:10.3390/ijerph13070721.
[16] E.Stefanopoulou, E.A.Grunfeld, Mind–body interventions for vasomotor symptoms in healthy menopausal women and breast cancer survivors. A systematic review, J. Psychosom. Obstet. Gynecol. 38 (2017) 210–225. doi:10.1080/0167482X.2016.1235147.
[17] S.E.Appling, S.Scarvalone, R.MacDonald, M.McBeth, K.J.Helzlsouer, Fatigue in breast cancer survivors: The impact of a mind-body medicine intervention, Oncol. Nurs. Forum. 39 (2012) 278–286. doi:10.1188/12.ONF.278-286.
[18] B.I.Rice, Mind-Body Interventions, (n.d.) 213–217.
[19] B.Hommel, L.S.Colzato, Meditation and Metacontrol, J. Cogn. Enhanc. 1 (2017) 115–121. doi:10.1007/s41465-017-0017-4.
[20] A.Moore, P.Malinowski, Meditation, mindfulness and cognitive flexibility, Conscious. Cogn. 18 (2009) 176–186. doi:10.1016/j.concog.2008.12.008.
[21] B.R.Cahn, J.Polich, Meditation states and traits: EEG, ERP, and neuroimaging studies, Psychol. Bull. 132 (2006) 180–211. doi:10.1037/0033-2909.132.2.180.
[22] A.M.Househam, C.T.Peterson, P.J.Mills, D.Chopra, The Effects of Stress and Meditation on the Immune System, Human Microbiota, and Epigenetics, Adv. Mind. Body. Med. 31 (2017) 10–25.
[23] M.C.Pascoe, D.R.Thompson, C.F.Ski, Meditation and Endocrine Health and Wellbeing, Trends Endocrinol. Metab. 31 (2020) 469–477. doi:10.1016/j.tem.2020.01.012.
[24] Y.Y.Tang, B.K.Hölzel, M.I.Posner, The neuroscience of mindfulness meditation, Nat. Rev. Neurosci. 16 (2015) 213–225. doi:10.1038/nrn3916.
[25] A.DosSantos-Silva, M.N.Bubols, I.D.L.Argimon, O.Stagnaro, L.O.Alminhana, Benefits of relaxation techniques in the elderly: a systematic review, Psico. 51 (2020) 28367. doi:10.15448/1980-8623.2020.1.28367.
[26] J.E.Peterson, Industrial health, Appl. Occup. Environ. Hyg. 6 (1991) 653–654. doi:10.1080/1047322X.1991.10387955.
[27] D.Effects, O.F.Relaxation, Outcome 957, Search. (1986).
[28] V.Perciavalle, M.Blandini, P.Fecarotta, A.Buscemi, D.DiCorrado, L.Bertolo, F.Fichera, M.Coco, The role of deep breathing on stress, Neurol. Sci. 38 (2017) 451–458. doi:10.1007/s10072-016-2790-8.
[29] S.Cicek, F.Basar, The effects of breathing techniques training on the duration of labor and anxiety levels of pregnant women, Complement. Ther. Clin. Pract. 29 (2017) 213–219. doi:10.1016/j.ctcp.2017.10.006.
[30] H.Y.Chan, Y.T.Dai, I.C.Hou, Evaluation of a tablet-based instruction of breathing technique in patients with COPD, Int. J. Med. Inform. 94 (2016) 263–270. doi:10.1016/j.ijmedinf.2016.06.018.
[31] P.Sharma, M.Mavai, O.L.Bhagat, M.Murugesh, S.Sircar, Slow deep breathing increases pain-tolerance and modulates cardiac autonomic nervous system, Indian J. Physiol. Pharmacol. 61 (2017) 107–113.
[32] R.P.Brown, P.L.Gerbarg, F.Muench, Breathing Practices for Treatment of Psychiatric and Stress-Related Medical Conditions, Psychiatr. Clin. North Am. 36 (2013) 121–140. doi:10.1016/j.psc.2013.01.001.
[33] C.Lan, J.S.Lai, S.Y.Chen, Tai chi chuan: An ancient wisdom on exercise and health promotion, Sport. Med. 32 (2002) 217–224. doi:10.2165/00007256-200232040-00001.
[34] D.E.Lewis, T’ai chi ch’uan, Complement. Ther. Nurs. Midwifery. 6 (2000) 204–206. doi:10.1054/ctnm.2000.0490.
[35] E.W.Thornton, K.S.Sykes, W.K.Tang, Health benefits of Tai Chi exercise: Improved balance and blood pressure in middle-aged women, Health Promot. Int. 19 (2004) 33–38. doi:10.1093/heapro/dah105.
[36] R.E.Taylor-Piliae, E.S.Froelicher, The effectiveness of tai chi exercise in improving aerobic capacity: A meta‐analysis, J. Cardiovasc. Nurs. 19 (2004) 48–57. doi:10.1097/00005082-200401000-00009.
[37] S.J.Winser, W.W.N.Tsang, K.Krishnamurthy, P.Kannan, Does Tai Chi improve balance and reduce falls incidence in neurological disorders? A systematic review and meta-analysis, Clin. Rehabil. 32 (2018) 1157–1168. doi:10.1177/0269215518773442.
[38] C.Lan, S.Y.Chen, M.K.Wong, J.S.Lai, Tai Chi Chuan exercise for patients with cardiovascular disease, Evidence-Based Complement. Altern. Med. 2013 (2013). doi:10.1155/2013/983208.
[39] R.B.Wall, Tai Chi and mindfulness-based stress reduction in a Boston Public Middle School, J. Pediatr. Heal. Care. 19 (2005) 230–237. doi:10.1016/j.pedhc.2005.02.006.
[40] B.Oh, K.Bae, G.Lamoury, T.Eade, F.Boyle, B.Corless, S.Clarke, A.Yeung, D.Rosenthal, L.Schapira, M.Back, The Effects of Tai Chi and Qigong on Immune Responses: A Systematic Review and Meta-Analysis, Medicines. 7 (2020) 39. doi:10.3390/medicines7070039.
[41] L.Qin, S.Au, W.Choy, P.Leung, M.Neff, K.Lee, M.Lau, J.Woo, K.Chan, Regular Tai Chi Chuan exercise may retard bone loss in postmenopausal women: A case-control study, Arch. Phys. Med. Rehabil. 83 (2002) 1355–1359. doi:10.1053/apmr.2002.35098.
[42] L.C., C.S.-Y., L.J.-S., W.A.M.-K., Tai Chi Chuan in medicine and health promotion, Evidence-Based Complement. Altern. Med. 2013 (2013). http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L369994890%5Cnhttp://dx.doi.org/10.1155/2013/502131%5Cnhttp://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=1741427X&id=doi:10.1155/2013/502131&atitle=Tai+Chi+Chuan+in+medicine+and+healt.
[43] B.C.Salgado, M.Jones, S.Ilgun, G.McCord, M.Loper-Powers, P.vanHouten, Effects of a 4-month Ananda Yoga program on physical and mental health outcomes for persons with multiple sclerosis., Int. J. Yoga Therap. 23 (2013) 27–38. doi:10.17761/ijyt.23.2.201k61q276486622.
[44] F.Hylander, M.Johansson, D.Daukantaitė, K.Ruggeri, Yin yoga and mindfulness: a five week randomized controlled study evaluating the effects of the YOMI program on stress and worry, Anxiety, Stress Coping. 30 (2017) 365–378. doi:10.1080/10615806.2017.1301189.
[45] H.Cramer, D.Quinker, K.Pilkington, H.Mason, J.Adams, G.Dobos, Associations of yoga practice, health status, and health behavior among yoga practitioners in Germany—Results of a national cross-sectional survey, Complement. Ther. Med. 42 (2019) 19–26. doi:10.1016/j.ctim.2018.10.026.
[46] Y.Mudra, Yoga Exercise Increases Chest Wall Expansion and, Thai J. Physiol. Sci. 19 (2006) 1–7. www.tjps.org.
[47] V.S.Cowen, T.B.Adams, Physical and perceptual benefits of yoga asana practice: Results of a pilot study, J. Bodyw. Mov. Ther. 9 (2005) 211–219. doi:10.1016/j.jbmt.2004.08.001.
[48] I.Stephens, Medical Yoga Therapy, Children. 4 (2017) 12. doi:10.3390/children4020012.
[49] S.L.Kolasinski, M.Garfinkel, A.G.Tsai, W.Matz, A.VanDyke, H.R.Schumacher, Iyengar yoga for treating symptoms of osteoarthritis of the knees: A pilot study, J. Altern. Complement. Med. 11 (2005) 689–693. doi:10.1089/acm.2005.11.689.
[50] W.T.Cade, D.N.Reeds, K.E.Mondy, E.T.Overton, J.Grassino, S.Tucker, C.Bopp, E.Laciny, S.Hubert, S.Lassa-Claxton, K.E.Yarasheski, Yoga lifestyle intervention reduces blood pressure in HIV-infected adults with cardiovascular disease risk factors, HIV Med. 11 (2010) 379–388. doi:10.1111/j.1468-1293.2009.00801.x.
[51] M.C.Pascoe, I.E.Bauer, A systematic review of randomised control trials on the effects of yoga on stress measures and mood, J. Psychiatr. Res. 68 (2015) 270–282. doi:10.1016/j.jpsychires.2015.07.013.
[52] N.Goldman, M.Weinstein, J.Cornman, B.Singer, T.Seeman, M.C.Chang, Sex differentials in biological risk factors for chronic disease: Estimates from population-based surveys, J. Women’s Heal. 13 (2004) 393–403. doi:10.1089/154099904323087088.
[53] S.Narayanan, R.Francisco, G.Lopez, M.A.Chaoul, S.Meegada, W.Liu, S.Mallaiah, K.Milbury, L.Cohen, Role of yoga across the cancer care continuum: From diagnosis through survivorship, J. Clin. Outcomes Manag. 26 (2019) 219–228.
[54] M.El-Sheikh, S.A.Erath, J.A.Buckhalt, D.A.Granger, J.Mize, Cortisol and children’s adjustment: The moderating role of sympathetic nervous system activity, J. Abnorm. Child Psychol. 36 (2008) 601–611. doi:10.1007/s10802-007-9204-6.
[55] K.Y.Weight, L.Program, T.D.Braun, C.L.Park, L.A.Conboy, Weight Loss Among Participants in a Residential , Int. J. Yoga Therap. 22 (2012). http://eds.b.ebscohost.com.ezproxy.endeavour.edu.au/eds/pdfviewer/pdfviewer?vid=29&sid=4b28d41c-cf55-4ee9-9161-3c0d60d6db26%40sessionmgr112&hid=108.
[56] M.Johansson, P.Hassmén, J.Jouper, Acute Effects of Qigong Exercise on Mood and Anxiety, Int. J. Stress Manag. 15 (2008) 199–207. doi:10.1037/1072-5245.15.2.199.
[57] Y.Zeng, X.Xie, A.S.K.Cheng, Qigong or Tai Chi in Cancer Care: an Updated Systematic Review and Meta-analysis, Curr. Oncol. Rep. 21 (2019) 4–9. doi:10.1007/s11912-019-0786-2.
[58] K.W.Chen, An analytic review of studies on measuring effects of external Qi in China, Altern. Ther. Health Med. 10 (2004) 38–50.
[59] K.M.Sancier, B.Hu, Medical applications of Qigong and emitted Qi on humans, animals, cell cultures, and plants: Review of selected scientific research, Am. J. Acupunct. 19 (1991) 367–377.
[60] H.S.Jang, M.S.Lee, Effects of qi therapy (external qigong) on premenstrual syndrome: A randomized placebo-controlled study, J. Altern. Complement. Med. 10 (2004) 456–462. doi:10.1089/1075553041323902.
[61] T.D.Thacher, L.Smith, P.R.Fischer, C.O.Isichei, S.S.Cha, J.M.Pettifor, Optimal Dose of Calcium for Treatment of Nutritional Rickets: A Randomized Controlled Trial, J. Bone Miner. Res. 31 (2016) 2024–2031. doi:10.1002/jbmr.2886.
[62] K.M.Sancier, Medical applications of qigong, Altern. Ther. Health Med. 2 (1996) 40–46.
[63] M.S.Lee, B.Oh, E.Ernst, Qigong for healthcare: an overview of systematic reviews, JRSM Short Rep. 2 (2011) 1–5. doi:10.1258/shorts.2010.010091.
[64] A.Zijlstra, M.Mancini, L.Chiari, W.Zijlstra, Biofeedback for training balance and mobility tasks in older populations: A systematic review, J. Neuroeng. Rehabil. 7 (2010) 1–15. doi:10.1186/1743-0003-7-58.
[65] P.L.A.Schoenberg, A.S.David, Biofeedback for psychiatric disorders: A systematic review, Appl. Psychophysiol. Biofeedback. 39 (2014) 109–135. doi:10.1007/s10484-014-9246-9.
[66] T.M.Sokhadze, R.L.Cannon, D.L.Trudeau, EEG biofeedback as a treatment for substance use disorders: Review, rating of efficacy, and recommendations for further research, Appl. Psychophysiol. Biofeedback. 33 (2008) 1–28. doi:10.1007/s10484-007-9047-5.
[67] J.A.Glombiewski, K.Bernardy, W.Häuser, Efficacy of EMG- and EEG-biofeedback in fibromyalgia syndrome: A meta-analysis and a systematic review of randomized controlled trials, Evidence-Based Complement. Altern. Med. 2013 (2013). doi:10.1155/2013/962741.
[68] J.M.Peake, G.Kerr, J.P.Sullivan, A critical review of consumer wearables, mobile applications, and equipment for providing biofeedback, monitoring stress, and sleep in physically active populations, Front. Physiol. 9 (2018) 1–19. doi:10.3389/fphys.2018.00743.
[69] S.Burger, the Aging Process, Sciences (New. York). 3 (1963) 10–13. doi:10.1002/j.2326-1951.1963.tb00730.x.
[70] C.Kenyon, A conserved regulatory system for aging, Cell. 105 (2001) 165–168. doi:10.1016/S0092-8674(01)00306-3.
[71] R.Stefanatos, A.Sanz, Mitochondrial complex I: A central regulator of the aging process, Cell Cycle. 10 (2011) 1528–1532. doi:10.4161/cc.10.10.15496.
[72] A.A.Cohen, E.Milot, Q.Li, P.Bergeron, R.Poirier, F.Dusseault-Bélanger, T.Fülöp, M.Leroux, V.Legault, E.J.Metter, L.P.Fried, L.Ferrucci, Detection of a novel, integrative aging process suggests complex physiological integration, PLoS One. 10 (2015) 1–26. doi:10.1371/journal.pone.0116489.
[73] A.Salminen, K.Kaarniranta, ER stress and hormetic regulation of the aging process, Ageing Res. Rev. 9 (2010) 211–217. doi:10.1016/j.arr.2010.04.003.
[74] S.Hekimi, L.Guarente, Genetics and the specificity of the aging process, Science (80-. ). 299 (2003) 1351–1354. doi:10.1126/science.1082358.
[75] Experimental procedure, Scand. J. Gastroenterol. 22 (1987) 13. doi:10.3109/00365528709091684.
[76] M.L.Toth, I.Melentijevic, L.Shah, A.Bhatia, K.Lu, A.Talwar, H.Naji, C.Ibanez-Ventoso, P.Ghose, A.Jevince, J.Xue, L.A.Herndon, G.Bhanot, C.Rongo, D.H.Hal, M.Driscoll, Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system, J. Neurosci. 32 (2012) 8778–8790. doi:10.1523/JNEUROSCI.1494-11.2012.
[77] J.N.Meyer, W.A.Boyd, G.A.Azzam, A.C.Haugen, J.H.Freedman, B.VanHouten, Decline of nucleotide excision repair capacity in aging Caenorhabditis elegans, Genome Biol. 8 (2007). doi:10.1186/gb-2007-8-5-r70.
[78] G.Aubert, P.M.Lansdorp, Telomeres and aging, Physiol. Rev. 88 (2008) 557–579. doi:10.1152/physrev.00026.2007.
[79] J.Campisi, S. hoKim, C.S.Lim, M.Rubio, Cellular senescence, cancer and aging: The telomere connection, Exp. Gerontol. 36 (2001) 1619–1637. doi:10.1016/S0531-5565(01)00160-7.
[80] K.Masutomi, S.Kaneko, N.Hayashi, T.Yamashita, Y.Shirota, K.Kobayashi, S.Murakami, Telomerase activity reconstituted in vitro with purified human telomerase reverse transcriptase and human telomerase RNA component, J. Biol. Chem. 275 (2000) 22568–22573. doi:10.1074/jbc.M000622200.
[81] L.M.Colgin, C.Wilkinson, A.Englezou, A.Kilian, M.O.Robinson, R.R.Reddel, The hTERTα splice variant is a dominant negative inhibitor of telomerase activity, Neoplasia. 2 (2000) 426–432. doi:10.1038/sj.neo.7900112.
[82] J.Karlseder, A.Smogorzewska, T.DeLange, Senescence induced by altered telomere state, not telomere loss, Science (80-. ). 295 (2002) 2446–2449. doi:10.1126/science.1069523.
[83] T.L.Jacobs, E.S.Epel, J.Lin, E.H.Blackburn, O.M.Wolkowitz, D.A.Bridwell, A.P.Zanesco, S.R.Aichele, B.K.Sahdra, K.A.MacLean, B.G.King, P.R.Shaver, E.L.Rosenberg, E.Ferrer, B.A.Wallace, C.D.Saron, Intensive meditation training, immune cell telomerase activity, and psychological mediators, Psychoneuroendocrinology. 36 (2011) 664–681. doi:10.1016/j.psyneuen.2010.09.010.
[84] C.Mason, R.A.Risques, L.Xiao, C.R.Duggan, I.Imayama, K.L.Campbell, A.Kong, K.E.Foster-Schubert, C.Y.Wang, C.M.Alfano, G.L.Blackburn, P.S.Rabinovitch, A.McTiernan, Independent and combined effects of dietary weight loss and exercise on leukocyte telomere length in postmenopausal women, Obesity. 21 (2013) 549–554. doi:10.1002/oby.20509.
[85] E.Puterman, J.Lin, E.Blackburn, A.O’Donovan, N.Adler, E.Epel, The power of exercise: Buffering the effect of chronic stress on telomere length, PLoS One. 5 (2010) 1–6. doi:10.1371/journal.pone.0010837.
[86] W.Chilton, B.O’Brien, F.Charchar, Telomeres, aging and exercise: Guilty by association?, Int. J. Mol. Sci. 18 (2017). doi:10.3390/ijms18122573.
[87] T.Esch, R.M.Kream, G.B.Stefano, Chromosomal Processes in Mind-Body Medicine: Chronic Stress, Cell Aging, and Telomere Length, Med. Sci. Monit. Basic Res. 24 (2018) 134–140. doi:10.12659/MSMBR.911786.
[88] J.E.Verhoeven, B.W.Penninx, V.I.Reus, R.Rosser, C.M.Hough, L.Mahan, H.M.Burke, E.H.Blackburn, O.M.Wolkowitz, HHS Public Access, (2018) 177–180. doi:10.1016/j.jpsychores.2017.06.009.Telomere.
[89] M.J.Kiel, S.J.Morrison, Maintaining Hematopoietic Stem Cells in the Vascular Niche, Immunity. 25 (2006) 862–864. doi:10.1016/j.immuni.2006.11.005.
[90] D.Bryder, D.J.Rossi, I.L.Weissman, Hematopoietic stem cells: The paradigmatic tissue-specific stem cell, Am. J. Pathol. 169 (2006) 338–346. doi:10.2353/ajpath.2006.060312.
[91] R.G.Shaffer, S.Greene, A.Arshi, G.Supple, A.Bantly, J.S.Moore, M.S.Parmacek, E.R.Mohler, Effect of acute exercise on endothelial progenitor cells in patients with peripheral arterial disease, Vasc. Med. 11 (2006) 219–226. doi:10.1177/1358863x06072213.
[92] T.Yin, L.Li, The stem cell niches in bone, J. Clin. Invest. 116 (2006) 1195–1201. doi:10.1172/JCI28568.
[93] J.E.Noll, S.A.Williams, L.E.Purton, A.C.W.Zannettino, Tug of war in the haematopoietic stem cell niche: Do myeloma plasma cells compete for the HSC niche?, Blood Cancer J. 2 (2012). doi:10.1038/bcj.2012.38.
[94] K.Inoue, S.Noda, N.Ogonuki, H.Miki, S.Inoue, K.Katayama, K.Mekada, H.Miyoshi, A.Ogura, Differential Developmental Ability of Embryos Cloned from Tissue-Specific Stem Cells, Stem Cells. 25 (2007) 1279–1285. doi:10.1634/stemcells.2006-0747.
[95] P.G.Robey, P.Bianco, Stem Cells in Tissue Engineering, Handb. Stem Cells. 2 (2013) 965–972. doi:10.1016/B978-0-12-385942-6.00079-2.
[96] R.C.Zhao, Y.Jiang, C.M.Verfaillie, A model of human p210bcr/ABL-mediated chronic myelogenous leukemia by transduction of primary normal human CD34+ cells with a BCR/ABL-containing retroviral vector, Blood. 97 (2001) 2406–2412. doi:10.1182/blood.V97.8.2406.
[97] J.W.Gratama, D.R.Sutherland, M.Keeney, Flow cytometric enumeration and immunophenotyping of hematopoietic stem and progenitor cells, Semin. Hematol. 38 (2001) 139–147. doi:10.1016/S0037-1963(01)90047-2.
[98] L.E.Sidney, M.J.Branch, S.E.Dunphy, H.S.Dua, A.Hopkinson, Concise review: Evidence for CD34 as a common marker for diverse progenitors, Stem Cells. 32 (2014) 1380–1389. doi:10.1002/stem.1661.
[99] R.Handgretinger, T.Klingebiel, P.Lang, M.Schumm, S.Neu, A.Geiselhart, P.Bader, P.G.Schlegel, J.Greil, D.Stachel, R.J.Herzog, D.Niethammer, Megadose transplantation of purified peripheral blood CD34+ progenitor cells from HLA-mismatched parental donors in children, Bone Marrow Transplant. 27 (2001) 777–783. doi:10.1038/sj.bmt.1702996.
[100] B.Vrtovec, G.Poglajen, L.Lezaic, M.Sever, D.Domanovic, P.Cernelc, A.Socan, S.Schrepfer, G.Torre-Amione, F.Haddad, J.C.Wu, Effects of intracoronary CD34+ stem cell transplantation in nonischemic dilated cardiomyopathy patients: 5-year follow-up., Circ. Res. 112 (2013) 165–173. doi:10.1161/CIRCRESAHA.112.276519.
[101] K.Sudo, H.Ema, Y.Morita, H.Nakauchi, Age-associated characteristics of murine hematopoietic stem cells [In Process Citation], J Exp Med. 192 (2000) 1273–1280.
[102] H.Vaziri, W.Dragowska, R.C.Allsopp, T.E.Thomas, C.B.Harley, P.M.Lansdorp, Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age, Proc. Natl. Acad. Sci. U. S. A. 91 (1994) 9857–9860. doi:10.1073/pnas.91.21.9857.
[103] D.Harraan, Lawrence Berkeley National Laboratory Recent Work Title AGING: A THEORY BASED ON FREE RADICAL AND RADIATION CHEMISTRY, (1955) Lawrence Berkeley National Laboratory. https://escholarship.org/uc/item/3w86c4g7.
[104] J.-A.L.Kelsey C. Martin Mhatre V. Ho, 基因的改变NIH Public Access, Bone. 23 (2012) 1–7. doi:10.1016/j.exger.2009.12.010.Mechanisms.
[105] T.J.Ho, L.I.Ho, K.W.Hsueh, T.M.Chan, S.L.Huang, J.G.Lin, W.M.Liang, W.H.Hsu, H.J.Harn, S.Z.Lin, Tai Chi intervention increases progenitor CD34+ cells in young adults, Cell Transplant. 23 (2014) 613–620. doi:10.3727/096368914X678355.
[106] N.E.Morone, C.M.Greco, Mind-body interventions for chronic pain in older adults: A structured review, Pain Med. 8 (2007) 359–375. doi:10.1111/j.1526-4637.2007.00312.x.
[107] J.X.Li, Y.Hong, K.M.Chan, Tai chi: Physiological characteristics and beneficial effects on health, Br. J. Sports Med. 35 (2001) 148–156. doi:10.1136/bjsm.35.3.148.
[108] H.Pan, Y.Pei, B.Li, Y.Wang, J.Liu, H.Lin, Tai Chi Chuan in postsurgical non-small cell lung cancer patients: Study protocol for a randomized controlled trial, Trials. 19 (2018) 1–9. doi:10.1186/s13063-017-2320-x.
[109] R.Spolski, P.Li, W.J.Leonard, Biology and regulation of IL-2: from molecular mechanisms to human therapy, Nat. Rev. Immunol. 18 (2018) 648–659. doi:10.1038/s41577-018-0046-y.
[110] S.Leung, X.Liu, L.Fang, X.Chen, T.Guo, J.Zhang, The cytokine milieu in the interplay of pathogenic Th1/Th17 cells and regulatory T cells in autoimmune disease, Cell. Mol. Immunol. 7 (2010) 182–189. doi:10.1038/cmi.2010.22.
[111] M.A.Yui, L.L.Sharp, W.L.Havran, E.V.Rothenberg, Preferential Activation of an IL-2 Regulatory Sequence Transgene in TCRγδ and NKT Cells: Subset-Specific Differences in IL-2 Regulation, J. Immunol. 172 (2004) 4691–4699. doi:10.4049/jimmunol.172.8.4691.
[112] M.A.Yui, G.Hernández-Hoyos, E.V.Rothenberg, A New Regulatory Region of the IL-2 Locus That Confers Position-Independent Transgene Expression, J. Immunol. 166 (2001) 1730–1739. doi:10.4049/jimmunol.166.3.1730.
[113] R.Setoguchi, S.Hori, T.Takahashi, S.Sakaguchi, Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization, J. Exp. Med. 201 (2005) 723–735. doi:10.1084/jem.20041982.
[114] F.Granucci, C.Vizzardelli, N.Pavelka, S.Feau, M.Persico, E.Virzi, M.Rescigno, G.Moro, P.Ricciardi-Castagnoli, Inducible IL-2 production by dendritic cells revealed by global gene expression analysis, Nat. Immunol. 2 (2001) 882–888. doi:10.1038/ni0901-882.
[115] S.Jiang, D.S.Game, D.Davies, G.Lombardi, R.I.Lechler, Activated CD1d-restricted natural killer T cells secrete IL-2: Innate help for CD4+CD25+ regulatory T cells?, Eur. J. Immunol. 35 (2005) 1193–1200. doi:10.1002/eji.200425899.
[116] M.B.Pepys, G.M.Hirschfield, C-reactive protein: A critical update, J. Clin. Invest. 111 (2003) 1805–1812. doi:10.1172/JCI200318921.
[117] N.R.Sproston, J.J.Ashworth, Role of C-reactive protein at sites of inflammation and infection, Front. Immunol. 9 (2018) 1–11. doi:10.3389/fimmu.2018.00754.
[118] C.Escadafal, S.Incardona, B.L.Fernandez-Carballo, S.Dittrich, The good and the bad: using C reactive protein to distinguish bacterial from non-bacterial infection among febrile patients in low-resource settings, BMJ Glob. Heal. 5 (2020). doi:10.1136/bmjgh-2020-002396.
[119] A.Pathak, A.Agrawal, Evolution of C-reactive protein, Front. Immunol. 10 (2019). doi:10.3389/fimmu.2019.00943.
[120] G.Hartmann, M.Tschöp, R.Fischer, C.Bidlingmaier, R.Riepl, K.Tschöp, H.Hautmann, S.Endres, M.Toepfer, High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein, Cytokine. 12 (2000) 246–252. doi:10.1006/cyto.1999.0533.
[121] L.Fontana, Modulating human aging and age-associated diseases, Biochim. Biophys. Acta - Gen. Subj. 1790 (2009) 1133–1138. doi:10.1016/j.bbagen.2009.02.002.
[122] X. hongPan, A.Mahemuti, X. huaZhang, Y. pingWang, P.Hu, J. boJiang, M. xiangXiang, G.Liu, J. anWang, Effect of Tai Chi exercise on blood lipid profiles: a meta-analysis of randomized controlled trials, J. Zhejiang Univ. Sci. B. 17 (2016) 640–648. doi:10.1631/jzus.B1600052.
[123] D.Vissers, W.Hens, J.Taeymans, J.P.Baeyens, J.Poortmans, L.VanGaal, The Effect of Exercise on Visceral Adipose Tissue in Overweight Adults: A Systematic Review and Meta-Analysis, PLoS One. 8 (2013). doi:10.1371/journal.pone.0056415.
[124] C.P.Earnest, Exercise interval training: An improved stimulus for improving the physiology of pre-diabetes, Med. Hypotheses. 71 (2008) 752–761. doi:10.1016/j.mehy.2008.06.024.
[125] A.M.Kuramoto, Therapeutic benefits of Tai Chi exercise: Research review, Wis. Med. J. 105 (2006) 42–46.
[126] Y.Tamura, Y.Tanaka, F.Sato, B.C.Jong, H.Watada, M.Niwa, J.Kinoshita, A.Ooka, N.Kumashiro, Y.Igarashi, S.Kyogoku, T.Maehara, M.Kawasumi, T.Hirose, R.Kawamori, Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients, J. Clin. Endocrinol. Metab. 90 (2005) 3191–3196. doi:10.1210/jc.2004-1959.
[127] S.J.Motivala, J.Sollers, J.Thayer, M.R.Irwin, Tai Chi Chih acutely decreases sympathetic nervous system activity in older adults, Journals Gerontol. - Ser. A Biol. Sci. Med. Sci. 61 (2006) 1177–1180. doi:10.1093/gerona/61.11.1177.
[128] P.C.Lin, T.W.Chiou, P.Y.Liu, S.P.Chen, H.I.Wang, P.C.Huang, S.Z.Lin, H.J.Harn, Food supplement 20070721-GX may increase CD34+ stem cells and telomerase activity, J. Biomed. Biotechnol. 2012 (2012). doi:10.1155/2012/498051.
[129] S.Méndez-Ferrer, D.Lucas, M.Battista, P.S.Frenette, Haematopoietic stem cell release is regulated by circadian oscillations, Nature. 452 (2008) 442–447. doi:10.1038/nature06685.
[130] S.Méndez-Ferrer, T.V.Michurina, F.Ferraro, A.R.Mazloom, B.D.MacArthur, S.A.Lira, D.T.Scadden, A.Ma’ayan, G.N.Enikolopov, P.S.Frenette, Mesenchymal and haematopoietic stem cells form a unique bone marrow niche, Nature. 466 (2010) 829–834. doi:10.1038/nature09262.
[131] A.Spiegel, S.Shivtiel, A.Kalinkovich, A.Ludin, N.Netzer, P.Goichberg, Y.Azaria, I.Resnick, I.Hardan, H.Ben-Hur, A.Nagler, M.Rubinstein, T.Lapidot, Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling, Nat. Immunol. 8 (2007) 1123–1131. doi:10.1038/ni1509.
[132] L.Wang, X.Guan, H.Wang, B.Shen, Y.Zhang, Z.Ren, Y.Ma, X.Ding, Y.Jiang, A small-molecule/cytokine combination enhances hematopoietic stem cell proliferation via inhibition of cell differentiation, Stem Cell Res. Ther. 8 (2017) 1–14. doi:10.1186/s13287-017-0625-z.
[133] H.R.Heo, L.Chen, B.An, K.S.Kim, J.Ji, S.H.Hong, Hormonal regulation of hematopoietic stem cells and their niche: A focus on estrogen, Int. J. Stem Cells. 8 (2015) 18–23. doi:10.15283/ijsc.2015.8.1.18.
[134] M.L.Topel, S.S.Hayek, Yi-An Ko, P.B.Sandesara, A.S.Tahhan, I.Hesaroieh, E.Mahar, G.S.Martin, E.K.Waller, A.A.Quyyumi, Sex differences in circulating progenitor cells, J. Am. Heart Assoc. 6 (2017). doi:10.1161/JAHA.117.006245.
[135] M.Hagins, W.Moore, A.Rundle, Does practicing hatha yoga satisfy recommendations for intensity of physical activity which improves and maintains health and cardiovascular fitness?, BMC Complement. Altern. Med. 7 (2007) 1–9. doi:10.1186/1472-6882-7-40.
[136] T.Boone, R.Board, T.Astorino, J.Baker, S.Brock, L.Dalleck, E.Goulet, R.Gotshall, A.Hutchison, M.Knight-Maloney, L.Kravitz, J.Laskin, Y.A.Lim, L.Lowery, D.Marks, C.Mermier, R.Robergs, C.Vella, D.Wagner, F.Wyatt, B.Zhou, S.Ladawan, M.Burtscher, P.Wannanon, N.Leelayuwat, Journal of Exercise Physiologyonline Volume 21 Number 2 Editor-in-Chief The Intensity of Qigong Exercise, 21 (2018) 100–115.
[137] R.H.H.Engelbert, M.VanBergen, T.Henneken, P.J.M.Helders, T.Takken, Exercise tolerance in children and adolescents with musculoskeletal pain in joint hypermobility and joint hypomobility syndrome, Pediatrics. 118 (2006). doi:10.1542/peds.2005-2219.
[138] J.S.Roy, L.J.Bouyer, P.Langevin, C.Mercier, Beyond the joint: The role of central nervous system reorganizations in chronic musculoskeletal disorders, J. Orthop. Sports Phys. Ther. 47 (2017) 817–821. doi:10.2519/jospt.2017.0608.
[139] J.Ebnezar, R.Nagarathna, B.Yogitha, H.R.Nagendra, Effects of an integrated approach of hatha yoga therapy on functional disability, pain, and flexibility in osteoarthritis of the knee joint: A randomized controlled study, J. Altern. Complement. Med. 18 (2012) 463–472. doi:10.1089/acm.2010.0320.
[140] S.S.M.Fong, S.S.M.Ng, H.W.Lee, M.Y.C.Pang, W.S.Luk, J.W.Y.Chung, J.Y.H.Wong, R.S.W.Masters, The effects of a 6-month tai chi qigong training program on temporomandibular, cervical, and shoulder joint mobility and sleep problems in nasopharyngeal cancer survivors, Integr. Cancer Ther. 14 (2015) 16–25. doi:10.1177/1534735414556508.
[141] D.Xu, Y.Hong, J.Li, K.Chan, Effect of tai chi exercise on proprioception of ankle and knee joints in old people, Br. J. Sports Med. 38 (2004) 50–54. doi:10.1136/bjsm.2002.003335.
[142] A.M.Hall, C.G.Maher, P.Lam, M.Ferreira, J.Latimer, Tai chi exercise for treatment of pain and disability in people with persistent low back pain: A randomized controlled trial, Arthritis Care Res. 63 (2011) 1576–1583. doi:10.1002/acr.20594.
[143] C.H.Chou, C.L.Hwang, Y.T.Wu, Effect of exercise on physical function, daily living activities, and quality of life in the frail older adults: A meta-analysis, Arch. Phys. Med. Rehabil. 93 (2012) 237–244. doi:10.1016/j.apmr.2011.08.042.
[144] J.-M.Zhang, J.An, NOT RIGHT REFERENCECytokines, Inflammation and Pain, Int Anesth. Clin. 69 (2009) 482–489. doi:10.1097/AIA.0b013e318034194e.Cytokines.
[145] O.Boyman, J.Sprent, The role of interleukin-2 during homeostasis and activation of the immune system, Nat. Rev. Immunol. 12 (2012) 180–190. doi:10.1038/nri3156.
[146] A.Han, M.Judd, V.Welch, T.Wu, P.Tugwell, G.A.Wells, Tai chi for treating rheumatoid arthritis, Cochrane Database Syst. Rev. (2004). doi:10.1002/14651858.cd004849.
[147] G.Banfi, M.Diani, P.D.Pigatto, E.Reali, T cell subpopulations in the physiopathology of fibromyalgia: Evidence and perspectives, Int. J. Mol. Sci. 21 (2020). doi:10.3390/ijms21041186.
[148] Y.Ganor, M.Besser, N.Ben-Zakay, T.Unger, M.Levite, Human T Cells Express a Functional Ionotropic Glutamate Receptor GluR3, and Glutamate by Itself Triggers Integrin-Mediated Adhesion to Laminin and Fibronectin and Chemotactic Migration, J. Immunol. 170 (2003) 4362–4372. doi:10.4049/jimmunol.170.8.4362.
[149] Y.Kobayashi, N.Kiguchi, Y.Fukazawa, F.Saika, T.Maeda, S.Kishioka, Macrophage-T cell interactions mediate neuropathic pain through the glucocorticoid-induced tumor necrosis factor ligand system, J. Biol. Chem. 290 (2015) 12603–12613. doi:10.1074/jbc.M115.636506.
[150] M.S.Slaiby A, Phenotypic Identification Of Spinal Cord-Infiltrating CD4+ T Lymphocytes In A Murine Model Of Neuropathic Pain, J. Pain Reli. s3 (2014) 1–20. doi:10.4172/2167-0846.s3-003.
[151] S.H.Yeh, H.Chuang, L.W.Lin, C.Y.Hsiao, H.L.Eng, Regular tai chi chuan exercise enhances functional mobility and CD4CD25 regulatory T cells, Br. J. Sports Med. 40 (2006) 239–243. doi:10.1136/bjsm.2005.022095.
[152] W.Liao, J.Lin, W.J.Leonard, IL-2 Family Cytokines, Curr. Opin. Immunol. 23 (2011) 418–423. doi:10.1016/j.coi.2011.08.003.IL-2.
[153] J.-A.L.Kelsey C. Martin Mhatre V. Ho, 基因的改变NIH Public Access, Bone. 23 (2012) 1–7. doi:10.1016/j.immuni.2013.01.004.Interleukin-2.
[154] J.-A.L.Kelsey C. Martin Mhatre V. Ho, 基因的改变NIH Public Access, Bone. 23 (2012) 1–7. doi:10.1007/s10067-009-1094-2.Evaluating.
[155] L.Labusca, Stem cells for the treatment of musculoskeletal pain, World J. Stem Cells. 7 (2015) 96. doi:10.4252/wjsc.v7.i1.96.
[156] S.H.Ross, D.A.Cantrell, Signaling and Function of Interleukin-2 in T Lymphocytes, Annu. Rev. Immunol. 36 (2018) 411–433. doi:10.1146/annurev-immunol-042617-053352.
[157] L.K.Teixeira, B.P.F.Fonseca, B.A.Barboza, J.P.B.Viola, Teixeira et al._2005_The role of interferon-γ γ on immune and allergic responses.pdf, 100 (2005) 137–144.
指導教授 孫維欣 金秀蓮(Wei-Hsin Sun Shiow-Lian Catherine Jin) 審核日期 2021-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明