博碩士論文 101284601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:54.80.26.116
姓名 古瑞杰(Ranjith Kumar Rajendran)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 藉由從環境中分離的真菌進行內分泌干擾物辛基酚 之生物降解與其預測之代謝途徑
(Biodegradation of the endocrine disrupter octylphenol by fungi from the environment and its proposed metabolic pathways)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2020-1-11以後開放)
摘要(中) 4-t-octylphenol (4-t-OP) 是廣泛使用的非離子表面活性劑 (辛基酚聚乙氧基化物) 的常見生物轉化產物. 然而, 與已廣泛用於許多工業領域 (包括紡織, 石油, 造紙和塑料工業) 的化合物相比, 4-t-OP 在環境中更持久, 普遍存在並具有雌激素活性. 微生物的生物降解是最重要的自然過程之一, 可以影響水生和陸地環境中污染物去除的速率. 4-t-OP 的降解途徑和其在細菌和白腐菌中酵素的分子研究已有很多文獻. 相比之下, 沒有研究調查非木質素分解真菌和酵母菌對於用 4-t-OP 作唯一碳源之降解潛力, 其降解機制仍然很大程度上未知.因此, 本研究旨在從污水處理廠和塑料工業廢物樣品中分離降解 4-t-OP 之非木質素分解真
菌和酵母, 並探索所涉及的降解途徑.通過使用 4-t-OP 作為唯一碳源和能源的培養技術, 從台北的污水處理廠中分離出具有降解 4-t-OP 能力的三種酵母菌種. 顯微鏡觀察和 ITS 和 LSU rRNA 基因序列的分子鑑定顯 示這些菌株分屬於兩個屬 , 命 名為 Candida rugopelliculosa RRKY5, Galactomyces
candidum RRK17 和 G. candidum RRK22. 在初步篩選中, 使用了不同的基質包括 4-t-OP, 4-
t-NP, OPEOn, NPEOn, 苯酚和異辛烷來研究分離的菌株的生長性質. 發現菌株 RRKY5 能利
用了所有測試的基質並且比其它菌株生長得更快. 在有無葡萄糖基質 (0.05%) 的情況下, 通
過分離的酵母菌種進行 4-t-OP 的生物降解的比較研究. HPLC 分析的結果表明, 無論有無葡
萄糖 (0.05%) 都會發生 4-t-OP 降解. 在 24 天後, 在含有或不含右旋糖的培養基中 93%或
ii
95% 的 4-t-OP 會被 RRKY5 菌株降解, 而在兩種白色念珠菌菌株中降解較低. 這些結果表
明, RRKY5 是比其他酵母物種更好的候選物. 因此選擇菌株 RRKY5 用於進一步研究.
菌株 RRKY5 具有廣泛的生存基質範圍並且能夠利用各種支鏈烷基酚 (AP). 有趣的
是, 在掃描電子顯微鏡中顯示, 在 4-t-OP 存在下菌株 RRKY5 形成節孢子, 而在沒有 4-t-OP
的葡萄糖存在下, 菌株保持在出芽酵母樣形式, 暗示節孢子的產生可能是使用 4-t-OP 的指
標. 在使用不同的溫度, pH 和 4-t-OP 濃度的生長和生物降解實驗的結果顯示, 菌株 RRKY5
降解 4-t-OP 的最佳條件為 30℃, pH5.0, 初始 4-t-OP 濃度為 30mg L-1. 在這些條件下, 最大
生物降解速率常數為 0.107d-1, 相當於 9.6 d 的最小半衰期. 利用液相色譜法-質譜聯用檢測
和表徵降解過程中的不同代謝物. 基於所鑑定到的代謝物,酵母菌株 RRKY5 可以通過支
鏈烷基側鍊和芳香環裂解途徑降解 4-t-OP.
另一方面,通過使用具有 4-t-OP 的最小鹽培養基 (MMSM) 作為唯一的碳源, 從台
北污水處理廠的樣品中分離出 14 種非木質素分解的真菌. 根據 ITS 序列的分子鑑定, 這些
菌 株屬於如 Aspergillus (2 spp.), Fusarium (6 spp.), Nectria (2 spp.), Pseudallescheria,
Scedosporium 和 Trichoderma (2 spp.). 利用在不同基質作為唯一碳源的培養基上進行初始
篩選。發現除了 Nectria (2 種), Pseudallescheria 和 Scedosporium 以外, 剩餘 10 種菌株具有
在多種基質的培養基上有效生長. 比較了各個菌株液體培養基中降解 4-t-OP 的有效性. 14
天後, 6 種 Fusarium 菌株中的 3 種, 4-t-OP 的降解最高 (>70%), 其次是其他 Fusarium 菌株,
在 Aspergillus 和 Trichoderma 的兩種菌株中最低。由於 Fusarium sp. RRK20 擁有最有效的
4-t-OP 降解能力, 因此選擇該菌株進行進一步研究.
基於 tef-1α基因序列的分析, RRK20 進一步鑑定為 Fusarium falciforme RRK20. 通
過中心複合設計和響應表面方法評價和優化參數 (例如 pH, 溫度和乾重) 之間的影響和相
iii
互作用. 降解效率受溫度和乾重顯著的影響. 發現最佳值為 pH 6.5, 初始接種物密度為 0.6
gL-1, 溫度為 28 ℃. 預測值與實驗值具有令人滿意的相關性, 係數測定 (R2) 為 0.9788. 統
計模型進一步驗證了在優化條件下的後續實驗. 評價葡萄糖濃度對 RRK20 降解 4-t-OP 的
影響. 結果表明, 通過在相對低的劑量下加入葡萄糖可以加速 4-t-OP 降解. 此外, 通過質譜
儀研究 4-t-OP 的真菌代謝途徑. 基於所鑑定到的代謝物, 菌株 RRK20 通過兩種不同的機制
降解 4-t-OP, 包括烷基支鏈側鏈氧化和芳環羥基化. 代謝物通過烷基側鏈進行進一步降解,
隨後芳環裂解.
結論, 這是第一個以酵母和非木質素分解真菌降解 4-t-OP 的研究. 本研究還證明了
這些菌株對於 4-t-OP 降解的最佳條件以提高生物降解效率. 添加營養物也可以增加 4-t-OP
的降解效率. 酵母和非木質素分解真菌降解 4-t-OP 的途徑不同於目前已知的細菌和真菌的
降解途徑.
摘要(英) 4-t-Octylphenol (4-t-OP) is a common biotransformation product of the widely used nonionic
surfactants, octylphenol polyethoxylates (OPEOn). However, compared to the parent compound that has been extensively used in many industrial sectors including textile, petroleum,
paper, and plastic industries, 4-t-OP is known to be more persistent, ubiquitous in the environment, and estrogenically active. Microbial biodegradation is one of the most important natural processes which can influence the fate and removal of pollutants in both aquatic and
terrestrial environments. Degradation pathways of 4-t-OP and their molecular studies of enzymes
in bacteria and white rot fungi have been well documented. By contrast, no study has
investigated the potential of non-ligninolytic fungi and yeasts for degradation of 4-t-OP used as
the sole carbon source and its degradation mechanisms remain largely unknown. Therefore, this
study aims to isolate 4-t-OP degrading non-ligninolytic fungi and yeasts from a sewage treatment plant and plastic industry waste samples and to explore the degradation pathways involved.
Three yeast species, with the ability to degrade 4-t-OP, were isolated from a sewage
treatment plant in Taipei by enrichment culture technique using 4-t-OP as the sole carbon and energy source. Microscopic observation and molecular identification by ITS and LSU rRNA gene sequences revealed that the isolates belonged to two genera and were designated as Candida rugopelliculosa RRKY5, Galactomyces candidum RRK17, and G. candidum RRK22.
For preliminary screening, growth properties of the isolated strains were explored using different substrates including 4-t-OP, 4-t-nonylphenol (4-t-NP), octylphenol polyethoxylates (OPEOn),
nonylphenol polyethoxylates (NPEOn), phenol, and isooctane. It was found that strain RRKY5
v
utilized all the tested substrates and grew faster than the others. Comparative investigation on biodegradation of 4-t-OP both in the presence and absence of the co-substrate dextrose (0.05%)
was carried out by the isolated yeast species. Results of HPLC analysis indicated that 4-t-OP
degradation took place both in the presence and absence of dextrose (0.05%); after 24 d, 93% or 95% of 4-t-OP was degraded by C. rugopelliculosa RRKY5 in media with or without dextrose,
whereas degradation was lower in the two strains of G. candidum. These results indicate that the C. rugopelliculosa RRKY5 is a better candidate than the other yeast species in degrading 4-t-OP
in liquid culture. The strain RRKY5 was chosen for further studies to address the kinetics and degradation mechanism of 4-t-OP.
C. rugopelliculosa RRKY5 was tested with various alkylphenols and their derivatives including 4-methylphenol, bisphenol A (BPA), 4-ethylphenol (4-EP), 4-t-butylphenol (4-t-BP), 4-t-OP, 4-t-NP, isooctane, and phenol. Strain RRKY5 had a broad substrate range and was
capable of utilizing various branched chain alkylphenols (APs). Interestingly, morphological analysis using scanning electron microscopy revealed that the strain RRKY5 in the presence of
4-t-OP formed arthroconidia, whereas the strain remained in the budding yeast-like form in the presence of glucose without 4-t-OP, implicating that arthroconidium production might be an
indicator for the utilization of 4-t-OP. Results of growth and biodegradation experiments with varying temperature, pH, and 4-t-OP concentrations showed that the optimum conditions for 4-t-
OP degradation by strain RRKY5 were 30 oC, pH 5.0, and an initial 4-tert-OP concentration of
30 mg L-1. Under these conditions, the maximum biodegradation rate constant was 0.107 d-1
equivalent to a minimum half-life of 9.6 d. Liquid chromatography-hybrid mass spectrometry
was used to detect and characterize different metabolites during the degradation. Based on the
vi
identified metabolites, the yeast strain RRKY5 can degrade 4-t-OP via both branched alkyl side
chain and aromatic ring cleavage pathways.
On the other hand, 14 non-ligninolytic fungi were isolated from soil, water, and sludge
samples from the sewage treatment plant in Taipei and plastic industry waste in Taoyuan, by using the modified minimal salt medium (MMSM) with 4-t-OP as the sole carbon source. According to the molecular identification by ITS sequences, the isolates belonged to taxa such as Aspergillus (2 spp.), Fusarium (6 spp.), Nectria (2 spp.), Pseudallescheria, Scedosporium, and
Trichoderma (2 spp.). Initial screening was conducted based on the growth properties on solid media with different substrates including 4-t-OP, 4-t-NP, OPEOn, NPEOn, estrone, 17β-estradiol
and 17α-ethnylestradiol as the sole carbon source. It was found that 10 strains, except the Nectria
(2 spp.), Pseudallescheria, and Scedosporium, grew effectively on media with a wide variety of
substrates. The effectiveness for the degradation of 4-t-OP in liquid media by the individual fungal isolates was compared. After 14 days, the degradation of 4-t-OP was the highest (>70%) by three of the six strains of Fusarium, followed by the other Fusarium strains and the lowest in
the two strains of Aspergillus and Trichoderma. Given that the most effective 4-t-OP degradation
was observed in Fusarium sp. RRK20, this strain was chosen for further studies.
Based on the analysis of the tef-1α gene sequence, FSSC RRK20 was further identified as Fusarium falciforme RRK20. The effects and the interactions between the parameters such as pH, temperature, and dry weight, were evaluated and optimized by a central composite design and a response surface methodology. The degradation efficiency was significantly affected by the temperature and dry weight. The optimal values were found to be a pH of 6.5, an initial
inoculum density of 0.6 g L-1, and a temperature of 28 oC. The predicted values were in
satisfactory correlation with experimental values with a coefficient determination (R2) of 0.9788.
vii
The statistical model was further validated for subsequent experimentation under optimized conditions. The effect of glucose concentrations on 4-t-OP degradation by F. falciforme RRK20
was evaluated. The results revealed that 4-t-OP degradation could be accelerated through the addition of glucose at relatively low dosage. Furthermore, the fungal metabolic pathway of 4-t-
OP was investigated by the Orbitrap elite mass spectrometer. Based on the identified metabolites, strain RRK20 degraded 4-t-OP via two different mechanisms including the alkyl branched side chain oxidation and the aromatic ring hydroxylation. Further degradation of the metabolites proceeded through the alkyl side chain followed by the aromatic ring cleavage.
In summary, this is the first study focusing on the degradation of 4-t-OP as the sole
carbon source by yeast and a non-ligninolytic fungus from sewage treatment plant and plastic industry waste samples. This study also demonstrated their optimum conditions for 4-t-OP
degradation to improve biodegradation efficiency. The addition of nutrients can increase
degradation efficiency of 4-t-OP. The pathways of degradation of 4-t-OP by the yeast and nonligninolytic fungi are different from the reported degradation pathways shown for bacteria and
fungi.
關鍵字(中) ★ 烷基酚
★ 烷基酚聚乙氧基化物
★ 生物降解
★ 內分泌干擾化學物質
★ 真菌
關鍵字(英) ★ Alkylphenols
★ Alkylphenol polyethoxylates
★ Biodegradation
★ Endocrine Disrupting Chemicals
★ Fungi
論文目次 中文摘要…………………………………………………………………………………………. i
Abstract ……………………..…………………………………….…..……..…...…………….. iv
Acknowledgements .………………………………………….….…..……..…...……………. viii
Table of Contents .…………………………………………..….…..…………...…………….... x
List of Tables ………………………………………………….……..……………………… xviii
List of Figures ………………………………………………..…………..…………………… xx
Abbreviations ……………………………………………….……..…………….………… xxviii
Chapter 1 Literature Review ……………………..…………….…..……..…...…………….... 1
1.1. Endocrine disrupting compounds (EDCs) ..…...……...…………..………………… 1
1.2. Alkylphenols …..…...…………………………………....……..…...………….…... 2
1.2.1. Physical and chemical characteristics of Long-chain alkylphenols ...….… 2
1.2.2. Source of alkylphenols (APs) .…………...…………………..…………… 3
1.2.3. Estrogenic activity ……...……………………………………..………….. 4
1.2.4. Environmental distribution of alkylphenols in the environment …….…… 5
1.2.4.1. Occurrence of APs in the aquatic environment …...……..……... 8
1.2.4.2. Occurrence of APs in terrestrial environment ……...…..……..... 9
1.2.4.3. Occurrence of APs in the foods ……………………………..… 10
1.2.4.4. Occurrence of APs human body ………...…………………….. 11
1.2.5. APs toxicity ………………………..……………….….………………… 13
1.2.6. Degradation of APs …………………...……………….………………… 14
1.2.6.1. Abiotic degradation …………...………….……………………. 14
1.2.6.1.1. Trivalent iron [Fe(III)] …………...………………….. 14
xi
1.2.6.1.2. Photo catalyst ………...…..………………………….. 15
1.2.6.1.3. Hydrogen peroxide (H2O2) …………......…………… 15
1.2.6.1.4. Ozonation ……………………….….…...…………… 16
1.2.6.2. Microbial degradation of APs ……………......….…………….. 17
1.2.6.2.1. Degradation of APs by bacteria ……………………... 18
1.2.6.2.2. Degradation of APs by fungi ………………………... 21
1.2.6.2.3. Degradation of APs by ligninolytic fungi …………… 22
1.2.6.2.4. Degradation of APs by non-ligninolytic fungi …….… 24
1.2.6.2.5. Degradation of NP by yeasts ………………...……..... 26
1.2.6.2.6. Degradation of APs by human and animal microsom . 27
1.2.7. Morphological characterization of fungal strains grown on alkylphenols . 29
1.2.8. General mechanisms of PAHs and alkanes degradation by microorganisms
…………………………………………………………………………….. 30
1.2.9. Mechanism of long-chain APs degradation by microorganisms ………... 33
1.2.9.1. Alkyl chain oxidation ………………………………………...... 34
1.2.9.2. Fission of the alkyl chain and phenol ring: ipso-substitution
reaction …………………………………………...…………… 35
1.2.9.3. Aromatic ring hydroxylation …………...…….…...…………… 38
1.2.9.4. Oxidative radical polymerization …………………….…...…… 40
1.2.9.5. Aromatic ring hydroxylation and glucuronidation of APs …..... 41
1.3. Rationale of the present study ……………………………………………………... 42
1.3.1. Hypotheses raised in the present study ………………………………...... 42
1.3.2. Plan of the present study ………………………...………………….…… 43
xii
1.3.3. Structure of the thesis ……………………………………………….…… 44
Chapter 2 Aerobic degradation of estrogenic alkylphenols by yeasts isolated from a sewage treatment plant ……………………………………………………..…………………………. 45
2.1. Abstract ………………………………………………..…………………………... 45
2.2. Introduction ……………………...……………………………..………………….. 47
2.3. Materials & methods ……...……………………………………..………………… 49
2.3.1. Chemicals ……………………………………………..…………………. 49
2.3.2. Enrichment and isolation of 4-t-OP degrading yeast strains ….…..…….. 49
2.3.3. DNA isolation and PCR amplification of 5.8S-ITS / LSU rDNA regions
………………………………………………………..…………………. 50
2.3.4. Phylogenetic analysis …………………………………..………..………. 51
2.3.5. Substrate utilization tests ………………………………..………………. 52
2.3.6. Biodegradation experiment ………………………………..…………….. 53
2.3.7. Analytical methods ……………..…………………………..…………… 54
2.3.7.1. Extraction of 4-t-OP …………………………………...………. 54
2.3.7.2. Spike recovery experiment ……………………..……………... 55
2.3.7.3. Quantitative analysis of residual 4-t-OP by HPLC ………..…... 55
2.4. Results & Discussion ……………………………………………..……………..… 57
2.4.1. Isolation of 4-t-OP degrading yeast strains …………………..………….. 57
2.4.2. Taxonomic relationship and phylogenetic analysis of yeast isolates …..... 58
2.4.3. Substrate utilization tests ……………………………………………….. 65
2.4.4. Analysis of residual 4-t-OP concentration by HPLC …….……....……… 68
2.5. Conclusions ………………………………………………………………..….…… 72
xiii
Chapter 3 Biodegradation of the Endocrine Disrupter 4-t-Octylphenol by the Yeast Strain
Candida rugopelliculosa RRKY5 via Phenolic Ring Hydroxylation and Alkyl Chain
Oxidation Pathways ……………………………………………………..……………………. 73
3.1. Abstract …………………………………………………………..………...……… 73
3.2. Introduction …………………………………………...……………..…………….. 74
3.3. Materials and methods …………………………………………...……..…………. 77
3.3.1. Chemicals ……………………………………………………….....…….. 77
3.3.2. Microorganism, culture media and growth condition ……………...……. 77
3.3.3. Utilization of various APs by strain RRKY5 ………..……………..……. 78
3.3.4. Morphological characterization ……………………………………..…... 78
3.3.5. Optimum conditions for cell growth and 4-t-OP degradation ……..……. 80
3.3.6. Analytical procedures ………………………………………………..….. 81
3.3.6.1. Ethyl acetate extraction …………………….……………..…… 81
3.3.6.2. Analysis of residual 4-t-OP concentration by high performance liquid chromatography ……………………………………....... 82
3.3.6.3. Analysis of 4-t-OP degradation products by liquid
chromatography-hybrid mass spectrometer (UPLC-ESI-MS/MS)
analysis …………………….………….…..……………………. 82
3.3.7. Data analysis …………………………………………..………………… 83
3.4. Results and discussion …………………………………………….....……………. 84
3.4.1. Utilization of various APs by strain RRKY5 ………………..………….. 84
3.4.2. Morphological characterization ………………………………..…….….. 86
3.4.3. Optimal conditions for cell growth and 4-t-OP degradation ……..……... 89
xiv
3.4.3.1. Effects of temperature on cell growth and 4-t-OP
degradation ……………………….………………..………….. 89
3.4.3.2. Effects of pH on cell growth and 4-t-OP degradation ……..….. 90
3.4.3.3. Effects of initial 4-t-OP concentrations on cell growth and
4-t-OP degradation ……………………………….………..…… 90
3.4.3.4. Kinetic model …………………………………………..……… 94
3.4.4. Identification of 4-t-OP degradation products by liquid chromatographyhybrid mass spectrometer (UPLC-ESI-MS/MS) ………...……..……….. 94
3.4.5. Proposed pathway for the degradation of 4-t-OP by
C. rugopelliculosa strain RRKY5 …………………………………….. 105
3.5. Conclusions ………………………………………………………………………. 109
Chapter 4 Isolation, screening, and characterization of branched-chain octylphenol
degrading non-ligninolytic fungus Fusarium falciforme and its proposed metabolic pathway
………………………………………………...…………………….…………………………. 110
4.1. Abstract …………………………………………………………...……………… 110
4.2. Introduction ………………………………………………………………………. 112
4.3. Materials and methods …………………………………………………………… 115
4.3.1. Chemicals ……………………………………….………………….…... 115
4.3.2. Samples collection ………………………………………………..……. 115
4.3.3. Enrichment and isolation of 4-t-OP degrading fungi ……………...…… 117
4.3.4. DNA extraction, PCR amplification, and sequencing of the isolated fungal strains ………………………………………………………...……….. 118
4.3.5. Phylogenetic analysis …………………………………………...……… 119
xv
4.3.6. Screening and preliminary investigation of 4-t-OP degradation capability of
fungal isolates ……………………………………………..…………… 119
4.3.6.1. Growth properties of isolated fungal strains with different substrates
…………………………………………………………………………… 120
4.3.6.2. Analysis of 4-t-OP degradation efficiency for the fungal isolates
…………………………………………………………………………… 120
4.3.7. Preparation of fungal inoculums …………………………………..…… 121
4.3.8. Extraction of residual 4-t-OP …………………………………...……… 123
4.3.9. Optimization of 4-t-OP degradation conditions by response surface
methodology …………………………………………………..……… 123
4.3.10. Process validation …………………………………………..………… 125
4.3.11. Effect of glucose concentrations on the degradation of 4-t-OP by strain
RRK20 …………………………………………………...…………… 126
4.3.12. Chemical analysis ………………………………………………..…… 126
4.3.12.1. Quantification of residual 4-t-OP by high performance liquid chromatography (HPLC) …………………………...………… 126
4.3.12.2. Identification of 4-t-OP degradation products by strain RRK20
using Ultra-performance liquid chromatography and mass
spectrometry (UPLC-MS/MS) …………………...…………… 126
4.4. Results and discussion ……………………………………………………….…… 126
4.4.1. Enrichment, isolation and identification of fungal isolates ………….… 126
4.4.2 Screening and preliminary investigation of 4-t-OP degrading capability of the fungal strains ……………………………………………………… 134
xvi
4.4.2.1 Growth properties of the fungal isolates with different carbon sources on solid medium ……………………………………… 134
4.4.2.2. Analysis of 4-t-OP degradation ability for the fungal isolates . 136
4.4.3. Optimization of culture conditions for 4-t-OP degradation using RSM .. 136
4.4.4 Mutual interactions between the parameters on 4-t-OP degradation …… 140
4.4.5. Process optimization and validation of the model using RSM ………… 142
4.4.6. Effect of additional carbon source on 4-t-OP degradation by strain RRK20
………………………………………………………………………………… 143
4.4.7. Proposed pathway for the degradation of 4-t-OP by strain RRK20 …… 144
4.5. Conclusions ………………………….……………………………………….…… 165
Chapter 5 Summary, conclusions, and future Study
5.1 Summary ……………………………………………….…………………………. 166
5.1.1 Isolation and screening of the potential 4-t-OP degrading yeast strain from a sewage treatment plant ……………………………...………………………… 168
5.1.2 Biodegradation of 4-t-OP by the yeast strain C. rugopelliculosa RRKY5 and its proposed degradation mechanism …………….....………………………… 169
5.1.3 Biodegradation of 4-t-OP by the non-ligninolytic fungi F. falciforme
RRK20 and its proposed degradation mechanism ………….………………… 169
5.2 Concluding remarks ……………………………….……..………………………. 171
5.3 Future study ……………………………………………….…...…………………. 172
References ………………………………………………….…………………………. 174
Appendix 1 Isolation of Genomic DNA ………………….…….……………………. 199
Appendix 2 PCR programs for the identification of fungi ….………..……………. 205
Appendix 3 Summary output for LOD and LOQ detections ….……..……………. 206
xvii
Appendix 4 Conference presentations …………..……….…….……………………. 208
Appendix 5 Abstract of conference presentations ………...……..…………………. 209
Appendix 6 List of publications …………..……….…………...……………………. 217
參考文獻 Ademollo, N., Ferrara, F., Delise, M., Fabietti, F., & Funari, E. (2008). Nonylphenol and octylphenol in human breast milk. Environment International, 34(7), 984-987.
Andreu, V., Ferrer, E., Rubio, J. L., Font, G., & Pico, Y. (2007). Quantitative determination of octylphenol, nonylphenol, alkylphenol ethoxylates and alcohol ethoxylates by pressurized liquid extraction and liquid chromatography–mass spectrometry in soils treated with sewage sludges. Science of the Total Environment, 378(1), 124-129.
Anstead, G.M., Carlson, K.E., Katzenellenbogen, J.A. (1997). The estradiol pharmacophore: ligand structure-estrogen receptor binding affinity relationships and a model for the receptor binding site. Steroids, 62(3), 268-303.
Ahel, M., & Giger, W. (1985). Determination of alkylphenols and alkylphenol mono-and diethoxylates in environmental samples by high-performance liquid chromatography. Analytical Chemistry, 57(8), 1577-1583.
Ahel, M. and Giger, W. (1993a) Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organic solvents. Chemosphere. 26(8), 1471-1478.
Ahel, M. and Giger, W. (1993b) Aqueous solubility of alkylphenols and alkylphenol polyethoxylates. Chemosphere. 26(8), 1461-1470.
Ahel, M., Giger, W., Koch, M. (1994). Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment-I. Occurrence and transformation in sewage treatment. Water Research, 28 (5), 1131-1142.
Ahel, M., Molnar, E., Ibric, S., & Giger, W. (2000). Estrogenic metabolites of alkylphenol polyethoxylates in secondary sewage effluents and rivers. Water Science and Technology, 42(7-8), 15-22.
Arora, P.K., Sasikala, C., Ramana, C.V. (2012). Degradation of chlorinated nitroaromatic compounds. Applied Microbiology & Biotechnology, 93(6), 2265-2277. Baldrian, P. (2008). Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecology, 1(1), 4-12.
Bamforth, S.M., Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. Journal of Chemical Technology and Biotechnology, 80(7), 723-736. Bergman, A., Heindel, J., Jobling, S., Kidd, K., & Zoeller, R. T. (2012). State-of-the-science of endocrine disrupting chemicals, 2012. Toxicology Letters, 211, S3.
176
Bernhardt, R. (2006). Cytochromes P450 as versatile biocatalysts. Journal of Biotechnology, 124(1), 128-145. Bertanza, G., Pedrazzani, R., Zambarda, V., Dal Grande, M., Icarelli, F., & Baldassarre, L. (2010). Removal of endocrine disrupting compounds from wastewater treatment plant effluents by means of advanced oxidation. Water Science and Technology, 61(7), 1663-1671. Bennie, D. T., Sullivan, C. A., Lee, H. B., Peart, T. E., & Maguire, R. J. (1997). Occurrence of alkylphenols and alkylphenol mono-and diethoxylates in natural waters of the Laurentian Great Lakes basin and the upper St. Lawrence River. Science of the Total Environment, 193(3), 263-275. Bennet, J. W., Wunch, K. G., & Faison, B. D. (2002). Use of fungi biodegradation.
Environmental Microbiology. 2nd edition, ASM Press Washington DC. Bezalel, L., Hadar, Y., & Cerniglia, C. E. (1996). Mineralization of Polycyclic Aromatic Hydrocarbons by the White Rot Fungus Pleurotus ostreatus. Applied and Environmental Microbiology, 62(1), 292-295. Bhattacharya, S. S., Syed, K., Shann, J., & Yadav, J. S. (2013). A novel P450-initiated biphasic process for sustainable biodegradation of benzo [a] pyrene in soil under nutrient-sufficient conditions by the white rot fungus Phanerochaete chrysosporium. Journal of Hazardous Materials, 261, 675-683. Bills, G. F., Platas, G., Overy, D. P., Collado, J., Fillola, A., Jimenez, M. R., & Pelaez, F. (2009). Discovery of the parnafungins, antifungal metabolites that inhibit mRNA polyadenylation, from the Fusarium larvarum complex and other Hypocrealean fungi. Mycologia, 101(4), 449-472. Blake, C. A., & Boockfor, F. R. (1997). Chronic administration of the environmental pollutant 4-tert-octylphenol to adult male rats interferes with the secretion of luteinizing hormone, follicle-stimulating hormone, prolactin, and testosterone. Biology of Reproduction, 57(2), 255-266. Bleve, G., Lezzi, C., Chiriatti, M. A., D’Ostuni, I., Tristezza, M., Di Venere, D., & Grieco, F. (2011). Selection of non-conventional yeasts and their use in immobilized form for the bioremediation of olive oil mill wastewaters. Bioresource Technology, 102(2), 982-989. Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology, 74(1), 63-67.
177
Bogh, I. B., Christensen, P., Dantzer, V., Groot, M., Thofner, I. C. N., Rasmussen, R. K., & Greve, T. (2001). Endocrine disrupting compounds: effect of octylphenol on reproduction over three generations. Theriogenology, 55(1), 131-150. Boockfor, F. R., & Blake, C. A. (1997). Chronic administration of 4-tert-octylphenol to adult male rats causes shrinkage of the testes and male accessory sex organs, disrupts spermatogenesis, and increases the incidence of sperm deformities. Biology of Reproduction, 57(2), 267-277.
Boopathy, R. 2000. Factors limiting bioremediation technologies. Bioresource Technology. 74(1), 63-67.
Brooke, D., Johnson, I., Mitchell, R., Watts, C. (2005). Environmental risk evaluation report: 4-tert-Octylphenol. Environment Agency UK. Bristol. ISBN, 1844324109. Brzozowski, A.M., Pike, A.C., Dauter, Z., Hubbard, R.E., Bonn, T., Engstrom, O., Ohman, L., Greene, G.L., Gustafsson, J.A., Carlquist, M. (1997). Molecular basis of agonism and antagonism in the oestrogen receptor. Nature, 389(6652), 753-758. Cabana, H., Jiwan, J.L.H., Rozenberg, R., Elisashvili, V., Penninckx, M., Agathos, S.N., Jones, J.P. (2007). Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere, 67(4), 770-778. Cajthaml, T. (2015). Biodegradation of endocrine?disrupting compounds by ligninolytic fungi: mechanisms involved in the degradation. Environmental Microbiology, 17(12), 4822-4834. Castillo, M., Penuela, G., & Barcelo, D. (2001). Identification of photocatalytic degradation products of non-ionic polyethoxylated surfactants in wastewaters by solid-phase extraction followed by liquid chromatography-mass spectrometric detection. Fresenius′ Journal of Analytical Chemistry, 369(7-8), 620-628.
Catapane, M., Nicolucci, C., Menale, C., Mita, L., Rossi, S., Mita, D.G., Diano, N. (2013). Enzymatic removal of estrogenic activity of nonylphenol and octylphenol aqueous solutions by immobilized laccase from Trametes versicolor. Journal of Hazardous Materials, 248, 337-346. Cerniglia, C.E. (1997). Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. Journal of Industrial Microbiology & Biotechnology, 19 (5), 324-333. Cerniglia, C. E., & Crow, S. A. (1981). Metabolism of aromatic hydrocarbons by yeasts. Archives of Microbiology, 129(1), 9-13.
178
Cerniglia, C.E., Sutherland, J.B. (2001). Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi. BRITISH MYCOLOGICAL SOCIETY SYMPOSIUM SERIES. pp. 136-187. Certa, H., Fedtke, N., Wiegand, H. J., Muller, A. M. F., & Bolt, H. M. (1996). Toxicokinetics of p-tert-octylphenol in male Wistar rats. Archives of Toxicology, 71(1-2), 112-122. Chang, B. V., Yu, C. H., & Yuan, S. Y. (2004a). Degradation of nonylphenol by anaerobic microorganisms from river sediment. Chemosphere, 55(4), 493-500. Chang, B. V., Yang, C. M., Cheng, C. H., & Yuan, S. Y. (2004b). Biodegradation of phthalate esters by two bacteria strains. Chemosphere, 55(4), 533-538. Chang, W., Um, Y., Holoman, T.R.P. (2006). Polycyclic aromatic hydrocarbon (PAH) degradation coupled to methanogenesis. Biotechnology Letters, 28(6), 425-430. Chang, C. F., Chen, C. C., Lee, C. F., & Liu, S. M. (2013). Identifying and characterizing Yarrowia keelungensis sp. nov., an oil-degrading yeast isolated from the sea surface microlayer. Antonie Van Leeuwenhoek, 104(6), 1117-1123. Chang, Y. C., Fuzisawa, S., Reddy, M. V., Kobayashi, H., Yoshida, E., Yajima, Y., & Choi, D. (2016). Degradation of Toxic Compounds at Low and Medium Temperature Conditions Using Isolated Fungus. CLEAN–Soil, Air, Water, 44(9999), 1-9. Chen, M. L., Lee, W. P., Chung, H. Y., Guo, B. R., & Mao, I. F. (2005a). Biomonitoring of alkylphenols exposure for textile and housekeeping workers. International Journal of Environmental Analytical Chemistry, 85(4-5), 335-347. Chen, H. J., Tseng, D. H., & Huang, S. L. (2005b). Biodegradation of octylphenol polyethoxylate surfactant Triton X-100 by selected microorganisms. Bioresource Technology, 96(13), 1483-1491. Chen, G. W., Ding, W. H., Ku, H. Y., Chao, H. R., Chen, H. Y., Huang, M. C., & Wang, S. L. (2010). Alkylphenols in human milk and their relations to dietary habits in central Taiwan. Food and Chemical Toxicology, 48(7), 1939-1944. Chen, S., Hu, Q., Hu, M., Luo, J., Weng, Q., & Lai, K. (2011). Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde. Bioresource Technology, 102(17), 8110-8116. Cheng, C. Y., Liu, L. L., & Ding, W. H. (2006a). Occurrence and seasonal variation of alkylphenols in marine organisms from the coast of Taiwan. Chemosphere, 65(11), 2152-2159.
179
Cheng, C. Y., Wu, C. Y., Wang, C. H., & Ding, W. H. (2006b). Determination and distribution characteristics of degradation products of nonylphenol polyethoxylates in the rivers of Taiwan. Chemosphere, 65(11), 2275-2281. Christiansen, T., Korsgaard, B., & Jespersen, A. (1998). Effects of nonylphenol and 17 beta-oestradiol on vitellogenin synthesis, testicular structure and cytology in male eelpout Zoarces viviparus. Journal of Experimental Biology, 201(2), 179-192. Christiansen, T., Korsgaard, B., & Jespersen, A. (1998). Induction of vitellogenin synthesis by nonylphenol and 17β-estradiol and effects on the testicular structure in the eelpout Zoarces viviparus. Marine Environmental Research, 46(1), 141-144. Cirja, M., Hommes, G., Ivashechkin, P., Prell, J., Schaffer, A., Corvini, P. F., & Lenz, M. (2009). Impact of bio-augmentation with Sphingomonas sp. strain TTNP3 in membrane bioreactors degrading nonylphenol. Applied Microbiology and Biotechnology, 84(1), 183-189. Coldham, N. G., Sivapathasundaram, S., Dave, M., Ashfield, L. A., Pottinger, T. G., Goodall, C., & Sauer, M. J. (1998). Biotransformation, tissue distribution, and persistence of 4-nonylphenol residues in juvenile rainbow trout (Oncorhynchus mykiss). Drug Metabolism and Disposition, 26(4), 347-354. Corvini, P. F. X., Schaffer, A., & Schlosser, D. (2006). Microbial degradation of nonylphenol and other alkylphenols-our evolving view. Applied Microbiology and Biotechnology, 72(2), 223-243. Covino, S., D′Annibale, A., Stazi, S. R., Cajthaml, T., ?van?arova, M., Stella, T., & Petruccioli, M. (2015). Assessment of degradation potential of aliphatic hydrocarbons by autochthonous filamentous fungi from a historically polluted clay soil. Science of the Total Environment, 505, 545-554. Corti, A., Frassinetti, S., Vallini, G., D′Antone, S., Fichi, C., & Solaro, R. (1995). Biodegradation of nonionic surfactants. I. Biotransformation of 4-(1-nonyl) phenol by a Candida maltosa isolate. Environmental Pollution, 90(1), 83-87. Crago, J., Tran, K., Budicin, A. Schreiber, B., Lavado, R., Schlenk, D. (2015). Exploring the Impacts of Two Separate Mixtures of Pesticide and Surfactants on Estrogenic Activity in Male Fathead Minnows and Rainbow Trout. Archieve of Environmental Contamination and Toxicology, 68(2), 362-370. ?re?nar, B., & Petri?, ?. (2011). Cytochrome P450 enzymes in the fungal kingdom. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1814(1), 29-35.
180
Crisp, T. M., Clegg, E. D., Cooper, R. L., Wood, W. P., Anderson, D. G., Baetcke, K. P., & Touart, L. W. (1998). Environmental endocrine disruption: an effects assessment and analysis. Environmental Health Perspectives, 106 (Suppl 1), 11. Dachs, J., Van Ry, D. A., & Eisenreich, S. J. (1999). Occurrence of estrogenic nonylphenols in the urban and coastal atmosphere of the lower Hudson River estuary. Environmental Science & Technology, 33(15), 2676-2679. Daidoji, T., Inoue, H., Kato, S., Yokota, H. (2003). Glucuronidation and excretion of nonylphenol in perfused rat liver. Drug Metabolism and Disposition, 31(8), 993-998. Dec, J., Haider, K., Bollag, J.M. (2003). Release of substituents from phenolic compounds during oxidative coupling reactions. Chemosphere, 52(3), 549-556. Delfosse, V., Grimaldi, M., Cavailles, V., Balaguer, P., Bourguet, W. (2014). Structural and functional profiling of environmental ligands for estrogen receptors. Environmental Health Perspectives (Online), 122(12), 1306. Deng, P., Zhong, D., Nan, F., Liu, S., Li, D., Yuan, T., Chen, X., Zheng, J. (2010). Evidence for the bioactivation of 4-nonylphenol to quinone methide and ortho-benzoquinone metabolites in human liver microsomes. Chemical Research in Toxicology, 23(10), 1617-1628. De Vries, Y. P., Takahara, Y., Ikunaga, Y., Ushiba, Y., Hasegawa, M., Kasahara, Y., & Ohta, H. (2001). Organic Nutrient-dependent Degradation of Branched Nonylphenol by Sphingomonas sp. YT Isolated from a River Sediment Sample. Microbes & Environment. 16(4), 240-249. Diamanti-Kandarakis, E., Bourguignon, J. P., Giudice, L. C., Hauser, R., Prins, G. S., Soto, A. M., & Gore, A. C. (2009). Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocrine Reviews, 30(4), 293-342. Doerge, D. R., Twaddle, N. C., Churchwell, M. I., Chang, H. C., Newbold, R. R., & Delclos, K. B. (2002). Mass spectrometric determination of p-nonylphenol metabolism and disposition following oral administration to Sprague-Dawley rats. Reproductive Toxicology, 16(1), 45-56.
Ding, W.H., Tzing, S.H., Lo, J.H. (1999). Occurrence and concentrations of aromatic surfactants and their degradation products in river waters of Taiwan. Chemosphere, 38(11), 2597-2606.
Ding, W. H., & Wu, C. Y. (2000). Determination of Estrogenic Nonylphenol and Bisphenol a in River Water by Solid?Phase Extraction and Gas Chromatography?Mass Spectrometry. Journal of the Chinese Chemical Society, 47(5), 1155-1160.
181
Dmitriev, V.V., Crowley, D., Rogachevsky, V.V., Negri, C.M., Rusakova, T.G., Kolesnikova, S.A., & Akhmetov, L. I. (2011). Microorganisms form exocellular structures, trophosomes, to facilitate biodegradation of oil in aqueous media. FEMS Microbiology Letter, 315(2), 134-140.
Dmitriev, V.V., Crowley, D.E., Zvonarev, A.N., Rusakova, T.G., Negri, M.C., Kolesnikova, S.A. (2016). Modifications of the cell wall of yeasts grown on hexadecane and under starvation conditions. Yeast, 33(2), 55-62. Dong, C.D., Chen, C.W., Chen, C.F. (2015). Seasonal and spatial distribution of 4-nonylphenol and 4-tert-octylphenol in the sediment of Kaohsiung Harbor, Taiwan. Chemosphere, 134, 588-597. Dubroca, J., Brault, A., Kollmann, A., Touton, I., Jolivalt, C., Kerhoas, L., & Mougin, C. (2005). Biotransformation of nonylphenol surfactants in soils amended with contaminated sewage sludges. In Environmental Chemistry (pp. 305-315). Springer Berlin Heidelberg. Elboughdiri, N., Mahjoubi, A., Shawabkeh, A., Khasawneh, H. E., & Jamoussi, B. (2015). Optimization of the degradation of hydroquinone, resorcinol and catechol using response surface methodology. Advances in Chemical Engineering and Science, 5(02), 111.
Eppink, M., Boeren, S.A., Vervoort, J., van Berkel, W. (1997). Purification and properties of 4-hydroxybenzoate 1-hydroxylase (decarboxylating), a novel flavin adenine dinucleotide-dependent monooxygenase from Candida parapsilosis CBS604. Journal of Bacteriology, 179(21), 6680-6687. Eriksson, M., Sodersten, E., Yu, Z., Dalhammar, G., Mohn, W.W. (2003). Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Applied and Environmental Microbiology, 69(1), 275-284. European Commission Joint Research Center, 2002. European Union Risk Assessment Report, 4-Nonylphenol (branched) and Nonylphenol, 2nd Priority List, vol. 10, Luxembourg. Falkenberg, J. A., Persson, B., Hojsholt, U., Rokkjaer, A., & Wahid, M. (2003). Typical values for diffuse soil pollution in Danish urban soil. Report to the Danish Environmental Protection Agency, 1236-1245. Farnet, A., Chevremont, A., Gil, G., Gastaldi, S., Ferre, E. (2011). Alkylphenol oxidation with a laccase from a white-rot fungus: Effects of culture induction and of ABTS used as a mediator. Chemosphere, 82(2), 284-289.
182
Ferrara, F., Ademollo, N., Orru, M. A., Silvestroni, L., & Funari, E. (2011). Alkylphenols in adipose tissues of Italian population. Chemosphere, 82(7), 1044-1049. Ferreira-Leach, A. M. R., & Hill, E. M. (2001). Bioconcentration and distribution of 4-tert-octylphenol residues in tissues of the rainbow trout (Oncorhynchus mykiss). Marine Environmental Research, 51(1), 75-89. Fu, M., Li, Z., & Gao, H. (2007). Distribution characteristics of nonylphenol in Jiaozhou Bay of Qingdao and its adjacent rivers. Chemosphere, 69(7), 1009-1016. Fujii, K., Urano, N., Ushio, H., Satomi, M., & Kimura, S. (2001). Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a sewage-treatment plant in Tokyo. International Journal of Systematic and Evolutionary Microbiology, 51(2), 603-610. Fukui, S., Osumi, M. (1973). Some specific features of the ultrastructure of Candida yeast cells growing on hydrocarbons. Proc. 3rd Symp. Tech. Microbiol., Berlin. Institut fur Garungsgewerbe und Biotechnol6gie, Berlin. pp. 375-384. Gabriel, F. L., Giger, W., Guenther, K., & Kohler, H. P. E. (2005a). Differential degradation of nonylphenol isomers by Sphingomonas xenophaga Bayram. Applied and Environmental Microbiology, 71(3), 1123-1129.
Gabriel, F.L., Heidlberger, A., Rentsch, D., Giger, W., Guenther, K., Kohler, H.P.E. (2005b). A novel metabolic pathway for degradation of 4-nonylphenol environmental contaminants by Sphingomonas xenophaga Bayram ipso-hydroxylation and intramolecular rearrangement. Journal of Biological Chemistry, 280(16), 15526-15533.
Gabriel, F.L., Cyris, M., Giger, W., Kohler, H.P.E. (2007a). ipso?Substitution: A General Biochemical and Biodegradation Mechanism to Cleave α?Quaternary Alkylphenols and Bisphenol A. Chemistry & biodiversity, 4(9), 2123-2137.
Gabriel, F.L., Cyris, M., Jonkers, N., Giger, W., Guenther, K., Kohler, H.P.E. (2007b). Elucidation of the ipso-substitution mechanism for side-chain cleavage of α-quaternary 4-nonylphenols and 4-t-butoxyphenol in Sphingobium xenophagum Bayram. Applied and Environmental Microbiology, 73(10), 3320-3326.
Gabriel, F.D.R.L., Routledge, E.J., Heidlberger, A., Rentsch, D., Guenther, K., Giger, W., Sumpter, J.P., Kohler, H.P.E. (2008). Isomer-specific degradation and endocrine disrupting activity of nonylphenols. Environmental Science & Technology, 42(17), 6399-6408.
Gabriel, F.D.R.L., Mora, M.A., Kolvenbach, B.A., Corvini, P.F., Kohler, H.P.E. (2012). Formation of toxic 2-nonyl-p-benzoquinones from α-tertiary 4-nonylphenol isomers
183
during microbial metabolism of technical nonylphenol. Environmental Science & Technology, 46(11), 5979-5987
Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes?application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113-118. Geiser, D. M. (2008). Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the Fusarium solani species complex. Journal of Clinical Microbiology, 46 (8), 2477-2490. Geiser, D. M., del Mar Jimenez-Gasco, M., Kang, S., Makalowska, I., Veeraraghavan, N., Ward, T. J. & O’Donnell, K. (2004). FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. In Molecular Diversity and PCR-detection of Toxigenic Fusarium species and Ochratoxigenic Fungi (pp. 473-479). Springer, Netherlands. Giger, W., P. Brunner, and C. Schafner. (1984). 4-nonylphenol in sewage sludge: accumulation of toxic metabolites from nonionic surfactants. Science, 225, 623-625. Goli?, N., ?ade?, N., Terzi?-Vidojevi?, A., ?uranska, H., Beganovi?, J., Lozo, J., & Topisirovi?, L. (2013). Evaluation of lactic acid bacteria and yeast diversity in traditional white pickled and fresh soft cheeses from the mountain regions of Serbia and lowland regions of Croatia. International Journal of Food Microbiology, 166(2), 294-300. Groenewald, M., Coutinho, T., Smith, M. T., & van der Walt, J. P. (2012). Species reassignment of Geotrichum bryndzae, Geotrichum phurueaensis, Geotrichum silvicola and Geotrichum vulgare based on phylogenetic analyses and mating compatibility. International Journal of Systematic and Evolutionary Microbiology, 62(12), 3072-3080. Gu, X., Zhang, Y., Zhang, J., Yang, M., Tamaki, H., Kamagata, Y., & Li, D. (2010). Isolation of phylogenetically diverse nonylphenol ethoxylate-degrading bacteria and characterization of their corresponding biotransformation pathways. Chemosphere, 80(3), 216-222. Guenther, K., Heinke, V., Thiele, B., Kleist, E., Prast, H., & Raecker, T. (2002). Endocrine disrupting nonylphenols are ubiquitous in food. Environmental Science & Technology, 36(8), 1676-1680. Hannemann, F., Bichet, A., Ewen, K. M., & Bernhardt, R. (2007). Cytochrome P450 systems-biological variations of electron transport chains. Biochimica et Biophysica Acta (BBA)-General Subjects, 1770(3), 330-344.
184
Harayama, S., & Rekik, M. (1989). Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. Journal of Biological Chemistry, 264(26), 15328-15333. Harayama, S., Kok, M., & Neidle, E. L. (1992). Functional and evolutionary relationships among diverse oxygenases. Annual Reviews in Microbiology, 46(1), 565-601. Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology, 9(3), 177-192. Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials, 169(1), 1-15. Hale, R. C., Smith, C. L., de Fur, P. O., Harvey, E., Bush, E. O., La Guardia, M. J., & Vadas, G. G. (2000). Nonylphenols in sediments and effluents associated with diverse wastewater outfalls. Environmental Toxicology and Chemistry, 19(4), 946-952. Heemken, O. P., Reincke, H., Stachel, B., & Theobald, N. (2001). The occurrence of xenoestrogens in the Elbe river and the North Sea. Chemosphere, 45(3), 245-259. Hammel, K. E. (1995). Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environmental Health Perspectives, 103(Suppl 5), 41. Hofrichter, M., Scheibner, K., Schneegas, I., Fritsche, W. 1998. Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Applied and Environmental Microbiology, 64(2), 399-404.
IPCS (2002). Global assessment of the state-of-the-science of endocrine disruptors. Geneva, Switzerland.
Irinyi, L., Serena, C., Garcia-Hermoso, D., Arabatzis, M., Desnos-Ollivier, M., Vu, D., & da Cunha, K. C. (2015). International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database-the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Medical Mycology, myv008.
Janicki, T., Krupi?ski, M., D?ugo?ski, J. (2016). Degradation and toxicity reduction of the endocrine disruptors nonylphenol, 4-tert-octylphenol and 4-cumylphenol by the non-ligninolytic fungus Umbelopsis isabellina. Bioresource Technology, 200, 223-229.
Jin, S., Yang, F., Liao, T., Hui, Y., & Xu, Y. (2008). Seasonal variations of estrogenic compounds and their estrogenicities in influent and effluent from a municipal sewage treatment plant in China. Environmental Toxicology and Chemistry, 27(1), 146-153. Jo, J. H., Lee, D. S., Park, D., Choe, W. S., & Park, J. M. (2008). Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogenes using statistical methods. Bioresource Technology, 99(6), 2061-2066.
185
Jobling, S., & Sumpter, J. P. (1993). Detergent components in sewage effluent are weakly oestrogenic to fish: an in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquatic Toxicology, 27(3), 361-372.
Jobling, S., Sumpter, J.P., Sheahan, D., Osborne, J.A., Matthiessen, P. (1996). Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environmental Toxicology and Chemistry, 15(2), 194-202.
Johnson, A. C., & Sumpter, J. P. (2001). Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environmental Science & Technology, 35(24), 4697-4703.
Junghanns, C., Moeder, M., Krauss, G., Martin, C., Schlosser, D. (2005). Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology, 151(1), 45-57.
Juarez-Ramirez, C., Ruiz-Ordaz, N., Cristiani-Urbina, E., & Galindez-Mayer, J. (2001). Degradation kinetics of phenol by immobilized cells of Candida tropicalis in a fluidized bed reactor. World Journal of Microbiology and Biotechnology, 17(7), 697-705.
Kannan, K., Keith, T. L., Naylor, C. G., Staples, C. A., Snyder, S. A., & Giesy, J. P. (2003). Nonylphenol and nonylphenol ethoxylates in fish, sediment, and water from the Kalamazoo River, Michigan. Archives of Environmental Contamination and Toxicology, 44(1), 0077-0082.
Karley, A. J., Powell, S. I., & Davies, J. M. (1997). Effect of nonylphenol on growth of Neurospora crassa and Candida albicans. Applied and Environmental Microbiology, 63(4), 1312-1317. Kawasse, F. M., Amaral, P. F., Rocha-Leao, M. H. M., Amaral, A. L., Ferreira, E. C., & Coelho, M. A. Z. 2003. Morphological analysis of Yarrowia lipolytica under stress conditions through image processing. Bioprocess & Biosystems Engineering, 25(6), 371-375.
Kelley, I., Freeman, J.P., Cerniglia, C.E. (1990). Identification of metabolites from degradation of naphthalene by a Mycobacterium sp. Biodegradation, 1(4), 283-290.
Kinnberg, K. A. R. I. N., Korsgaard, B., Bjerregaard, P. O. U. L., & Jespersen, A. S. (2000). Effects of nonylphenol and 17-beta-estradiol on vitellogenin synthesis and testis morphology in male platyfish Xiphophorus maculatus. Journal of Experimental Biology, 203(2), 171-181.
186
Kim, S. J., & Shoda, M. (1999). Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Applied and Environmental Microbiology, 65(3), 1029-1035.
Kim, Y. S., Katase, T., Sekine, S., Inoue, T., Makino, M., Uchiyama, T., & Yamashita, N. (2004). Variation in estrogenic activity among fractions of a commercial nonylphenol by high performance liquid chromatography. Chemosphere, 54(8), 1127-1134.
Koch, N. M., Soto, I. M., Galvagno, M., Hasson, E., & Iannone, L. (2015). Biodiversity of cactophilic microorganisms in western Argentina: community structure and species composition in the necroses of two sympatric cactus hosts. Fungal Ecology, 13, 167-180.
Kolvenbach, B., Corvini, P.X. (2012). The degradation of alkylphenols by Sphingomonas sp. strain TTNP3–a review on seven years of research. New Biotechnology, 30(1), 88-95.
Kohtani, S., Koshiko, M., Kudo, A., Tokumura, K., Ishigaki, Y., Toriba, A., & Nakagaki, R. (2003). Photodegradation of 4-alkylphenols using BiVO 4 photocatalyst under irradiation with visible light from a solar simulator. Applied Catalysis B: Environmental, 46(3), 573-586. Koyyappurath, S., Atuahiva, T., Le Guen, R., Batina, H., Le Squin, S., Gautheron, N., & Liew, E. C. Y. (2015). Fusarium oxysporum f. sp. radicis?vanillae is the causal agent of root and stem rot of vanilla. Plant Pathology, 65(4), 612-625.
Kuiper, G.G., Lemmen, J.G., Carlsson, B., Corton, J.C., Safe, S.H., Van Der Saag, P.T., Van Der Burg, B., Gustafsson, J.A.k. (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology, 139(10), 4252-4263.
Krupi?ski, M., Szewczyk, R., & D?ugo?ski, J. (2013). Detoxification and elimination of xenoestrogen nonylphenol by the filamentous fungus Aspergillus versicolor. International Biodeterioration & Biodegradation, 82, 59-66.
Krupi?ski, M., Janicki, T., Pa?ecz, B., D?ugo?ski, J. (2014). Biodegradation and utilization of 4-n-nonylphenol by Aspergillus versicolor as a sole carbon and energy source. Journal of Hazardous Materials, 280, 678-684.
Kurtzman, C. P., & Robnett, C. J. (1997). Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′end of the large-subunit (26S) ribosomal DNA gene. Journal of Clinical Microbiology, 35(5), 1216-1223.
Kurtzman, C. P., & Robnett, C. J. (1998). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek, 73(4), 331-371.
187
Kurtzman, C. P., Robnett, C. J., & Basehoar-Powers, E. (2008). Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Research, 8(6), 939-954.
Kurtzman, C., Fell, J. W., & Boekhout, T. (Eds.). (2011). The yeasts: a taxonomic study. Elsevier. Laws, S. C., Carey, S. A., Ferrell, J. M., Bodman, G. J., & Cooper, R. L. (2000). Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats. Toxicological Sciences, 54(1), 154-167.
Lee, C. C., Jiang, L. Y., Kuo, Y. L., Hsieh, C. Y., Chen, C. S., & Tien, C. J. (2013). The potential role of water quality parameters on occurrence of nonylphenol and bisphenol A and identification of their discharge sources in the river ecosystems. Chemosphere, 91(7), 904-911.
Lee, H. B., & Peart, T. E. (1995). Determination of 4-nonylphenol in effluent and sludge from sewage treatment plants. Analytical Chemistry, 67(13), 1976-1980.
Lerner, D. T., B. T. Bjornsson, and S. D. McCormick. (2007). Larval exposure to 4-nonylphenol and 17β-estradiol affects physiological and behavioral development in seawater adaptation in Atlantic salmon smolts. Environmental Science & Technology, 41, 4479-4485. Li, D., Kim, M., Shim, W. J., Yim, U. H., Oh, J. R., & Kwon, Y. J. (2004). Seasonal flux of nonylphenol in Han River, Korea. Chemosphere, 56(1), 1-6. Li, X. L., Luan, T. G., Liang, Y., Wong, M. H., & Lan, C. Y. (2007). Distribution patterns of octylphenol and nonylphenol in the aquatic system at Mai Po Marshes Nature Reserve, a subtropical estuarine wetland in Hong Kong. Journal of Environmental Sciences, 19(6), 657-662. Li, Y., Jiang, H., Xu, Y., & Zhang, X. (2008). Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method. Applied Microbiology and Biotechnology, 77(6), 1207-1217. Li, X., Ying, G. G., Su, H. C., Yang, X. B., & Wang, L. (2010). Simultaneous determination and assessment of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles. Environment International, 36(6), 557-562. Li, J., Cai, W., & Zhu, L. (2011). The characteristics and enzyme activities of 4-chlorophenol biodegradation by Fusarium sp. Bioresource Technology, 102(3), 2985-2989.
188
Li, Z., Gibson, M., Liu, C., & Hu, H. (2013). Seasonal variation of nonylphenol concentrations and fluxes with influence of flooding in the Daliao River Estuary, China. Environmental Monitoring and Assessment, 185(6), 5221-5230. Limtong, S., Nitiyon, S., Kaewwichian, R., Jindamorakot, S., Am-In, S., & Yongmanitchai, W. (2012). Wickerhamomyces xylosica sp. nov. and Candida phayaonensis sp. nov., two xylose-assimilating yeast species from soil. International Journal of Systematic and Evolutionary Microbiology, 62(11), 2786-2792.
Liu, Z. H., Kanjo, Y., & Mizutani, S. (2009). Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment-physical means, biodegradation, and chemical advanced oxidation: a review. Science of the Total Environment, 407(2), 731-748.
Liu, X., Zhang, J., Jiang, J., Li, R., Xie, Z., & Li, S. (2011). Biochemical degradation pathway of reactive blue 13 by Candida rugopelliculosa HXL-2. International Biodeterioration & Biodegradation, 65(1), 135-141.
Llorca-Porcel, J., Martinez-Parreno, M., Martinez-Soriano, E., & Valor, I. (2009). Analysis of chlorophenols, bisphenol-A, 4-tert-octylphenol and 4-nonylphenols in soil by means of ultrasonic solvent extraction and stir bar sorptive extraction with in situ derivatisation. Journal of Chromatography A, 1216(32), 5955-5961.
Lobo, C.C., Bertola, N.C., Contreras, E.M. (2013). Stoichiometry and kinetic of the aerobic oxidation of phenolic compounds by activated sludge. Bioresource Technology, 136, 58-65. Lombard, L., Van Der Merwe, N. A., Groenewald, J. Z., & Crous, P. W. (2015). Generic concepts in Nectriaceae. Studies in Mycology, 80, 189-245.
Lopez-Espinosa, M. J., Freire, C., Arrebola, J. P., Navea, N., Taoufiki, J., Fernandez, M. F., & Olea, N. (2009). Nonylphenol and octylphenol in adipose tissue of women in Southern Spain. Chemosphere, 76(6), 847-852. Lopez-Linares, J. C., Ballesteros, I., Touran, J., Cara, C., Castro, E., Ballesteros, M., & Romero, I. (2015). Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production. Bioresource Technology, 190, 97-105.
Loos, R., Wollgast, J., Huber, T., & Hanke, G. (2007). Polar herbicides, pharmaceutical products, perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and nonylphenol and its carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in Northern Italy. Analytical and Bioanalytical Chemistry, 387(4), 1469-1478.
189
Loyo-Rosales, J. E., Rosales-Rivera, G. C., Lynch, A. M., Rice, C. P., & Torrents, A. (2004). Migration of nonylphenol from plastic containers to water and a milk surrogate. Journal of Agricultural and Food Chemistry, 52(7), 2016-2020.
Lu, Y. Y., Chen, M. L., Sung, F. C., Wang, P. S. G., & Mao, I. F. (2007). Daily intake of 4-nonylphenol in Taiwanese. Environment International, 33(7), 903-910. Lu, Z., & Gan, J. (2013). Oxidation of nonylphenol and octylphenol by manganese dioxide: kinetics and pathways. Environmental Pollution, 180, 214-220.
Lu, Z., & Gan, J. (2014). Analysis, toxicity, occurrence and biodegradation of nonylphenol isomers: A review. Environment International, 73, 334-345. Luo, Z. H., Pang, K. L., Gu, J. D., Chow, R. K. K., & Vrijmoed, L. L. P. (2009). Degradability of the three dimethyl phthalate isomer esters (DMPEs) by a Fusarium species isolated from mangrove sediment. Marine Pollution Bulletin, 58(5), 765-768.
Ludvik, J., Munk, V., Dostalek, M. (1968). Ultrastructural changes in the yeast Candida lipolytica caused by penetration of hydrocarbons into the cell. Experientia, 24(10), 1066-1068.
Mazellier, P., & Leverd, J. (2003). Transformation of 4-tert-octylphenol by UV irradiation and by an H 2 O 2/UV process in aqueous solution. Photochemical & Photobiological Sciences, 2(9), 946-953.
Marco-Urrea, E., Garcia-Romera, I., & Aranda, E. (2015). Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnology, 32(6), 620-628.
Middelhoven, W. J. (1993). Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeast like fungi. Antonie van Leeuwenhoek, 63(2), 125-144.
Moon, D.S., Song, H.G. (2012). Degradation of alkylphenols by white rot fungus Irpex lacteus and its manganese peroxidase. Applied Biochemistry and Biotechnology, 168(3), 542-549.
Montgomery-Brown, J., & Reinhard, M. (2003). Occurrence and behavior of alkylphenol polyethoxylates in the environment. Environmental Engineering Science, 20(5), 471-486. Mouhamadou, B., Faure, M., Sage, L., Marcais, J., Souard, F., & Geremia, R. A. (2013). Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biology, 117(4), 268-274.
Nakada, N., Shinohara, H., Murata, A., Kiri, K., Managaki, S., Sato, N., & Takada, H. (2007). Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-
190
disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Research, 41(19), 4373-4382.
Nakamura, M., Nagoya, H., & Hirai, T. (2002). Nonylphenol induces complete feminization of the gonad in genetically controlled all-male amago salmon. Fisheries Science, 68(6), 1387-1389. Nalim, F. A., Samuels, G. J., Wijesundera, R. L., & Geiser, D. M. (2011). New species from the Fusarium solani species complex derived from perithecia and soil in the Old World tropics. Mycologia, 103(6), 1302-1330.
Neam?u, M., & Frimmel, F. H. (2006). Photodegradation of endocrine disrupting chemical nonylphenol by simulated solar UV-irradiation. Science of the Total Environment, 369(1), 295-306.
Neam?u, M., Popa, D. M., & Frimmel, F. H. (2009). Simulated solar UV-irradiation of endocrine disrupting chemical octylphenol. Journal of Hazardous Materials, 164(2), 1561-1567.
Neujahr, H. Y., & Varga, J. M. (1970). Degradation of Phenols by Intact Cells and Cell?Free Preparations of Trichosporon cutaneum. European Journal of Biochemistry, 13(1), 37-44.
Nice, H. E., Morritt, D., Crane, M., & Thorndyke, M. (2003). Long-term and transgenerational effects of nonylphenol exposure at a key stage in the development of Crassostrea gigas. Possible endocrine disruption?. Marine Ecology Progress Series, 256, 293-300.
Ning, B., Graham, N. J., & Zhang, Y. (2007). Degradation of octylphenol and nonylphenol by ozone-Part I: Direct reaction. Chemosphere, 68(6), 1163-1172.
Ning, B., Graham, N. J., & Zhang, Y. (2007). Degradation of octylphenol and nonylphenol by ozone-Part II: Indirect reaction. Chemosphere, 68(6), 1173-1179.
Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N., & Larsson, K. H. (2008). Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics, 4, 193-201.
Nomura, S., Daidoji, T., Inoue, H., & Yokota, H. (2008). Differential metabolism of 4-n-and 4-tert-octylphenols in perfused rat liver. Life Sciences, 83(5), 223-228.
Nwachukwu, S. (2000). Enhanced rehabilitation of tropical aquatic environments polluted with crude petroleum using Candida utilis. Journal of Environmental Biology, 21(3), 241-250.
191
O′Donnell, K., Cigelnik, E., & Nirenberg, H.I. (1998). Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia, 465-493. O′Donnell, K. (2000). Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia, 919-938. O’Donnell, K., Ward, T. J., Robert, V. A., Crous, P. W., Geiser, D. M., & Kang, S. (2015). DNA sequence-based identification of Fusarium: Current status and future directions. Phytoparasitica, 43(5), 583-595.
Olaniran, A. O., Pillay, D., & Pillay, B. (2006). Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes. Chemosphere, 63(4), 600-608.
Omero?lu, S., Sanin, F.D. (2014). Fate and degradation kinetics of nonylphenol compounds in aerobic batch digesters. Water Research. 64, 1-12.
Ohe, T., Mashino, T., Hirobe, M. (1997). Substituent Elimination Fromp-Substituted Phenols by Cytochrome P450 ipso-Substitution by the Oxygen Atom of the Active Species. Drug Metabolism and Disposition, 25(1), 116-122.
Osumi, M. (1998). The ultrastructure of yeast: cell wall structure and formation. Micron, 29(2), 207-233.
Osumi, M. (2012). Visualization of yeast cells by electron microscopy. Journal of Electron Microscopy, dfs082.
Otaka, H., Yasuhara, A., & Morita, M. (2003). Determination of bisphenol A and 4-nonylphenol in human milk using alkaline digestion and cleanup by solid-phase extraction. Analytical Sciences, 19(12), 1663-1666. Paris, F., Balaguer, P., Terouanne, B., Servant, N., Lacoste, C., Cravedi, J. P., & Sultan, C. (2002). Phenylphenols, biphenols, bisphenol-A and 4-tert-octylphenol exhibit α and β estrogen activities and antiandrogen activity in reporter cell lines. Molecular and Cellular Endocrinology, 193(1), 43-49.
Patrolecco, L., Capri, S., De Angelis, S., Pagnotta, R., Polesello, S., & Valsecchi, S. (2006). Partition of nonylphenol and related compounds among different aquatic compartments in Tiber River (Central Italy). Water, Air, and Soil Pollution, 172(1-4), 151-166.
Pan, Y. P., & Tsai, S. W. (2009). Determination and residual characteristic of alkylphenols in household food detergents of Taiwan. Chemosphere, 76(3), 381-386.
Pedersen, R.T., Hill, E.M. (2000). Identification of novel metabolites of the xenoestrogen 4-tert-octylphenol in primary rat hepatocytes. Chemico-Biology Interactions. 128(3), 189-209.
192
Pedersen, S.N., Lindholst, C. (1999). Quantification of the xenoestrogens 4-tert-octylphenol and bisphenol A in water and in fish tissue based on microwave assisted extraction, solid-phase extraction and liquid chromatography-mass spectrometry. Journal of Chromatography A, 864(1), 17-24. Perez-Campo, F. M., & Dominguez, A. (2001). Factors affecting the morphogenetic switch in Yarrowia lipolytica. Current Microbiology, 43(6), 429-433.
Porter, A., Hay, A. (2007). Identification of opdA, a gene involved in biodegradation of the endocrine disrupter octylphenol. Applied and Environmental Microbiology, 73(22), 7373-7379.
Porter, A., Campbell, B., Kolvenbach, B., Corvini, P.X., Benndorf, D., Rivera-Cancel, G., Hay, A. (2012). Identification of the flavin monooxygenase responsible for ipso substitution of alkyl and alkoxyphenols in Sphingomonas sp. TTNP3 and Sphingobium xenophagum Bayram. Applied Microbiology and Biotechnology, 94(1), 261-272.
Paszczynski, A., & Crawford, R. L. (1995). Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium. Biotechnology Progress, 11(4), 368-379.
Pedersen, R.T., Hill, E.M. (2000). Identification of novel metabolites of the xenoestrogen 4-tert-octylphenol in primary rat hepatocytes. Chemico-Biological Interactions, 128(3), 189-209.
Prenafeta-Boldu, F. X., Vervoort, J., Grotenhuis, J. T. C., & Van Groenestijn, J. W. (2002). Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1. Applied and Environmental Microbiology, 68(6), 2660-2665.
Raecker, T., Thiele, B., Boehme, R. M., & Guenther, K. (2011). Endocrine disrupting nonyl-and octylphenol in infant food in Germany: considerable daily intake of nonylphenol for babies. Chemosphere, 82(11), 1533-1540.
Rajendran, R.K., Huang, S.L., Lin, C.C., Kirschner, R. (2016). Aerobic degradation of estrogenic alkylphenols by yeasts isolated from a sewage treatment plant. RSC Advances, 6, 82862-82871. Rajendran, R.K., Huang, S. L., Lin, C. C., & Kirschner, R. (2017). Biodegradation of the endocrine disrupter 4-tert-octylphenol by the yeast strain Candida rugopelliculosa RRKY5 via phenolic ring hydroxylation and alkyl chain oxidation pathways. Bioresource Technology, 226, 55-64.
193
Ramsay, J.A., Robertson, K., Acay, N., Ramsay, B.A. (2005). Enhancement of PAH biomineralization rates by cyclodextrins under Fe (III)-reducing conditions. Chemosphere, 61(5), 733-740.
Ricken, B., Kolvenbach, B.A., Corvini, P.F. (2015). Ipso-substitution-the hidden gate to xenobiotic degradation pathways. Current Opinion in Biotechnology, 33, 220-227. Routledge, E. J., & Sumpter, J. P. (1997). Structural features of alkylphenolic chemicals associated with estrogenic activity. Journal of Biological Chemistry, 272(6), 3280-3288. Ro?alska, S., Szewczyk, R., D?ugo?ski, J. (2010). Biodegradation of 4-n-nonylphenol by the non-ligninolytic filamentous fungus Gliocephalotrichum simplex: a proposal of a metabolic pathway. Journal of Hazardous Materials, 180(1), 323-331. Ro?alska, S., Sobo?, A., Paw?owska, J., Wrzosek, M., D?ugo?ski, J. (2015). Biodegradation of nonylphenol by a novel entomopathogenic Metarhizium robertsii strain. Bioresource Technology, 191, 166-172. Sahoo, N. K., Pakshirajan, K., Ghosh, P. K., & Ghosh, A. (2011). Biodegradation of 4-chlorophenol by Arthrobacter chlorophenolicus A6: effect of culture conditions and degradation kinetics. Biodegradation, 22(2), 275-286. Saito, I., Onuki, A., & Seto, H. (2004). Indoor air pollution by alkylphenols in Tokyo. Indoor Air, 14(5), 325-332. Sasaki, K., Takatsuki, S., Nemoto, S., Imanaka, M., Eto, S., Murakami, E., & Toyoda, M. (1999). Determination of alkylphenols and 2, 4-dichlorophenol in foods. Journal of the Food Hygienic Society of Japan (Japan). Schug, T. T., Janesick, A., Blumberg, B., & Heindel, J. J. (2011). Endocrine disrupting chemicals and disease susceptibility. The Journal of Steroid Biochemistry and Molecular Biology, 127(3), 204-215. Schmidt, S. N., Christensen, J. H., & Johnsen, A. R. (2010). Fungal PAH-metabolites resist mineralization by soil microorganisms. Environmental Science & Technology, 44(5), 1677-1682.
Schug, T., Abagyan, R., Blumberg, B., Collins, T., Crews, D., DeFur, P., Dickerson, S., Edwards, T., Gore, A., Guillette, L. (2013). Designing endocrine disruption out of the next generation of chemicals. Green Chemistry, 15(1), 181-198. Shan, J., Jiang, B., Yu, B., Li, C., Sun, Y., Guo, H., & Ji, R. (2011). Isomer-specific degradation of branched and linear 4-nonylphenol isomers in an oxic soil. Environmental Science & Technology, 45(19), 8283-8289.
194
Sharpe, R. M., Fisher, J. S., Millar, M. M., Jobling, S., & Sumpter, J. P. (1995). Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production. Environmental Health Perspectives, 103(12), 1136. Shareef, A., Angove, M. J., Wells, J. D., & Johnson, B. B. (2006). Aqueous solubilities of estrone, 17β-estradiol, 17α-ethynylestradiol, and bisphenol A. Journal of Chemical & Engineering Data, 51(3), 879-881. Shen, J., Zhang, X., Chen, D., Liu, X., & Wang, L. (2015). Characteristics of pyridine biodegradation by a novel bacterial strain, Rhizobium sp. NJUST18. Desalination and Water Treatment, 53(7), 2005-2013. Soares, A., Guieysse, B., Delgado, O., & Mattiasson, B. (2003). Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnology Letters, 25(9), 731-738. Soares, A., Jonasson, K., Terrazas, E., Guieysse, B., Mattiasson, B. (2005). The ability of white-rot fungi to degrade the endocrine-disrupting compound nonylphenol. Applied Microbiology and Biotechnology, 66(6), 719-725.
Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., Lester, J. (2008). Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 34(7), 1033-1049.
Solano?Serena, F., Marchal, R., Heiss, S., & Vandecasteele, J. P. (2004). Degradation of isooctane by Mycobacterium austroafricanum IFP 2173: growth and catabolic pathway. Journal of Applied Microbiology, 97(3), 629-639. Song, J., Gu, J., Zhai, Y., Wu, W., Wang, H., Ruan, Z.,& Yan, Y. (2013). Biodegradation of nicosulfuron by a Talaromyces flavus LZM1. Bioresource Technology, 140, 243-248.
Stachel, B., Ehrhorn, U., Heemken, O. P., Lepom, P., Reincke, H., Sawal, G., & Theobald, N. (2003). Xenoestrogens in the River Elbe and its tributaries. Environmental Pollution, 124(3), 497-507.
Subramanian, V., & Yadav, J. S. (2009). Role of P450 monooxygenases in the degradation of the endocrine-disrupting chemical nonylphenol by the white rot fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 75(17), 5570-5580. Suhaila, Y. N., Ramanan, R. N., Rosfarizan, M., Latif, I. A., & Ariff, A. B. (2013). Optimization of parameters for improvement of phenol degradation by Rhodococcus UKMP-5M using response surface methodology. Annals of Microbiology, 63(2), 513-521.
Sumpter, J. P., & Jobling, S. (1995). Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environmental Health Perspectives, 103 (Suppl 7), 173.
195
Sutherland, J.B. (2004). Degradation of hydrocarbons by yeast and filamentous fungi. Fungal Biotechnology in Agricultural, Food and Environmental Applications.
Syed, K., Porollo, A., Lam, Y. W., & Yadav, J. S. (2011). A fungal P450 (CYP5136A3) capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp 129 and Leu 324. PloS one, 6(12), e28286.
Tabira, Y., Nakai, M., Asai, D., Yakabe, Y., Tahara, Y., Shinmyozu, T., & Shimohigashi, Y. (1999). Structural requirements of para?alkylphenols to bind to estrogen receptor. European Journal of Biochemistry, 262(1), 240-245.
Tabb, M. M., & Blumberg, B. (2006). New modes of action for endocrine-disrupting chemicals. Molecular Endocrinology, 20(3), 475-482.
Tanghe, T., Dhooge, W., & Verstraete, W. (1999a). Isolation of a bacterial strain able to degrade branched nonylphenol. Applied and Environmental Microbiology, 65(2), 746-751.
Tanghe, T., Dhooge, W., & Verstraete, W. (2000). Formation of the metabolic intermediate 2, 4, 4-trimethyl-2-pentanol during incubation of a shape Sphingomonas sp. strain with the xeno-estrogenic octylphenol. Biodegradation, 11(1), 11-19.
Tamagawa, Y., Hirai, H., Kawai, S., Nishida, T. (2007). Removal of estrogenic activity of 4?tert?octylphenol by ligninolytic enzymes from white rot fungi. Environmental Toxicology, 22 (3), 281-286.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729.
Tamura, A., Satoh, E., Kashiwada, A., Matsuda, K., & Yamada, K. (2010). Removal of alkylphenols by the combined use of tyrosinase immobilized on ion?exchange resins and chitosan beads. Journal of Applied Polymer Science, 115(1), 137-145.
Tanaka, T., Tonosaki, T., Nose, M., Tomidokoro, N., Kadomura, N., Fujii, T., Taniguchi, M. (2001). Treatment of model soils contaminated with phenolic endocrine-disrupting chemicals with laccase from Trametes sp. in a rotating reactor. Journal of Biosciences & Bioengineering, 92(4), 312-316.
Tezuka, Y., Takahashi, K., Suzuki, T., Kitamura, S., Ohta, S., Nakamura, S., Mashino, T. (2007). Novel metabolic pathways of p-nonylphenol catalyzed by cytochrome P450 and estrogen receptor binding activity of new metabolites. Journal of Health Science, 53(5), 552-561.
196
Thibaut, R., Debrauwer, L., Rao, D., Cravedi, J.P. (1998). Characterization of biliary metabolites of 4-n-nonylphenol in rainbow trout (Oncorhynchus mykiss). Xenobiotica, 28(8), 745-757.
Thibaut, R., Debrauwer, L., Rao, D., Cravedi, J. (1999). Urinary metabolites of 4-n-nonylphenol in rainbow trout (Oncorhynchus mykiss). Science of the Total Environment, 233(1), 193-200.
Toyo’oka, T., & Oshige, Y. (2000). Determination of Alkylphenols in Mineral Water Contained in PET Bottles by liquid Chromatography with Coulometric Detection. Analytical Sciences, 16(10), 1071-1076.
Toyama, T., Murashita, M., Kobayashi, K., Kikuchi, S., Sei, K., Tanaka, Y., & Mori, K. (2011). Acceleration of nonylphenol and 4-tert-octylphenol degradation in sediment by Phragmites australis and associated rhizosphere bacteria. Environmental Science & Technology, 45(15), 6524-6530.
Tsutsumi, Y., Haneda, T., Nishida, T. (2001). Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere, 42(3), 271-276.
Tuan, N. N., Hsieh, H. C., Lin, Y. W., & Huang, S. L. (2011). Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes. Bioresource Technology, 102(5), 4232-4240.
Ushiba, Y., Takahara, Y., & Ohta, H. (2003). Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. International Journal of Systematic and Evolutionary Microbiology, 53(6), 2045-2048.
Vallini, G., Frassinetti, S., D′Andrea, F., Catelani, G., Agnolucci, M. (2001). Biodegradation of 4-(1-nonyl) phenol by axenic cultures of the yeast Candida aquaetextoris: identification of microbial breakdown products and proposal of a possible metabolic pathway. International Biodeterioration & Biodegradation, 47(3), 133-140.
Van Ry, D. A., Dachs, J., Gigliotti, C. L., Brunciak, P. A., Nelson, E. D., & Eisenreich, S. J. (2000). Atmospheric seasonal trends and environmental fate of alkylphenols in the lower Hudson River estuary. Environmental Science & Technology, 34(12), 2410-2417.
Van Beilen, J.B., Funhoff, E.G. (2007). Alkane hydroxylases involved in microbial alkane degradation. Applied Microbiology and Biotechnology, 74(1), 13-21.
197
Van Beilen, J.B., Li, Z., Duetz, W.A., Smits, T.H., Witholt, B. (2003). Diversity of alkane hydroxylase systems in the environment. Oil & Gas Science and Technology, 58(4), 427-440.
Van Berkel, W.J., Eppink, M.H., Middelhoven, W.J., Vervoort, J., Rietjens, I.M. (1994). Catabolism of 4-hydroxybenzoate in Candida parapsilosis proceeds through initial oxidative decarboxylation by a FAD-dependent 4-hydroxybenzoate 1-hydroxylase. FEMS Microbiology Letter, 121(2), 207-215. Varhanickova, D., Shiu, W. Y., & Mackay, D. (1995). Aqueous solubilities of alkylphenols and methoxyphenols at 25 oC. Journal of Chemical and Engineering Data, 40(2), 448-451.
Vatsis, K.P., Coon, M.J. (2002). Ipso-substitution by cytochrome P450 with conversion of p-hydroxybenzene derivatives to hydroquinone: evidence for hydroperoxo-iron as the active oxygen species. Archives of Biochemistry and Biophysics, 397(1), 119-129.
Vazquez, G. R., Meijide, F. J., Da Cuna, R. H., Nostro, F. L., Piazza, Y. G., Babay, P. A., & Guerrero, G. A. (2009). Exposure to waterborne 4-tert-octylphenol induces vitellogenin synthesis and disrupts testis morphology in the South American freshwater fish Cichlasoma dimerus (Teleostei, Perciformes). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 150(2), 298-306.
Vikelsoe, J., Thomsen, M., & Carlsen, L. (2002). Phthalates and nonylphenols in profiles of differently dressed soils. Science of the Total Environment, 296(1), 105-116.
Voutsa, D., Hartmann, P., Schaffner, C., & Giger, W. (2006). Benzotriazoles, alkylphenols and bisphenol A in municipal wastewaters and in the Glatt River, Switzerland. Environmental Science and Pollution Research, 13(5), 333-341.
Wang, J., Majima, N., Hirai, H., & Kawagishi, H. (2012). Effective removal of endocrine-disrupting compounds by lignin peroxidase from the white-rot fungus Phanerochaete sordida YK-624. Current Microbiology, 64(3), 300-303.
Wang, J., Pan, H., Liu, Z., & Ge, F. (2009). Ultra-high-pressure liquid chromatography–tandem mass spectrometry method for the determination of alkylphenols in soil. Journal of Chromatography A, 1216(12), 2499-2503. Weber, C. F., Balasch, M. M., Gossage, Z., Porras-Alfaro, A., & Kuske, C. R. (2012). Soil fungal cellobiohydrolase I gene (cbhI) composition and expression in a loblolly pine plantation under conditions of elevated atmospheric CO2 and nitrogen fertilization. Applied and Environmental Microbiology, 78(11), 3950-3957.
198
Wells, T., & Ragauskas, A. J. (2012). Biotechnological opportunities with the β-ketoadipate pathway. Trends Biotechnology, 30(12), 627-637. Weis, M., Yang, Z. L., & Oberwinkler, F. (1998). Molecular phylogenetic studies in the genus Amanita. Canadian Journal of Botany, 76(7), 1170-1179.
White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18(1), 315-322
White, R., Jobling, S., Hoare, S. A., Sumpter, J. P., & Parker, M. G. (1994). Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology, 135(1), 175-182.
Whited, G. M., & Gibson, D. T. (1991). Separation and partial characterization of the enzymes of the toluene-4-monooxygenase catabolic pathway in Pseudomonas mendocina KR1. Journal of Bacteriology, 173(9), 3017-3020.
Woertz, J. R., Kinney, K. A., McIntosh, N. D. P., & Szaniszlo, P. J. (2001). Removal of toluene in a vapor?phase bioreactor containing a strain of the dimorphic black yeast Exophiala lecanii?corni. Biotechnology and Bioengineering, 75(5), 550-558. Wu, Y. R., Luo, Z. H., & Vrijmoed, L. L. P. (2010). Biodegradation of anthracene and benz [a] anthracene by two Fusarium solani strains isolated from mangrove sediments. Bioresource Technology, 101(24), 9666-9672.
Wu, Y., Yuan, H., Wei, G., Zhang, S., Li, H., Dong, W. (2013). Photodegradation of 4-tert-octylphenol in aqueous solution promoted by Fe (III). Environmental Science & Pollution Research, 20(1), 3-9.
Xu, J., Wang, P., Guo, W., Dong, J., Wang, L., & Dai, S. (2006). Seasonal and spatial distribution of nonylphenol in Lanzhou Reach of Yellow River in China. Chemosphere, 65(9), 1445-1451.
Yamada, K., Inoue, T., Akiba, Y., Kashiwada, A., Matsuda, K., & Hirata, M. (2006). Removal of p-alkylphenols from aqueous solutions by combined use of mushroom tyrosinase and chitosan beads. Bioscience, Biotechnology, and Biochemistry, 70(10), 2467-2475.
Yamada, K., Tamura, T., Azaki, Y., Kashiwada, A., Hata, Y., Higashida, K., & Nakamura, Y. (2009). Removal of linear and branched p-alkylphenols from aqueous solution by combined use of melB tyrosinase and chitosan beads. Journal of Polymers and the Environment, 17(2), 95-102.
199
Yang, D. K., & Ding, W. H. (2005). Determination of alkylphenolic residues in fresh fruits and vegetables by extractive steam distillation and gas chromatography–mass spectrometry. Journal of Chromatography A, 1088(1), 200-204.
Yang, L., Chen, S., Hu, M., Hao, W., Geng, P., Zhang, Y. 2011. Biodegradation of carbofuran by Pichia anomala strain HQ-C-01 and its application for bioremediation of contaminated soils. Biology & Fertility of Soils, 47(8), 917-923. Yi, L. I. U., Feng, W. A. N. G., Siqing, X. I. A., & Jianfu, Z. H. A. O. (2008). Study of 4-t-octylphenol degradation and microbial community in granular sludge. Journal of Environmental Sciences, 20(2), 167-171. Ying, G. G., Williams, B., & Kookana, R. (2002). Environmental fate of alkylphenols and alkylphenol ethoxylats-a review. Environment International, 28(3), 215-226. Ying, G. G. (2006). Fate, behavior and effects of surfactants and their degradation products in the environment. Environment International, 32(3), 417-431. Yu, C. P., Roh, H., & Chu, K. H. (2007). 17β-Estradiol-degrading bacteria isolated from activated sludge. Environmental Science & Technology, 41(2), 486-492. Yuan, S. Y., Yu, C. H., & Chang, B. V. (2004). Biodegradation of nonylphenol in river sediment. Environmental Pollution, 127(3), 425-430.
Zhang, J., Shi, J., Lv, H., & Liu, Y. (2013). Induction of hexanol dehydrogenase in Geotrichum spp. by the addition of hexanol. Applied Microbiology and Biotechnology, 97(3), 1279-1287.
Zhang, H., Spiteller, M., Guenther, K., Boehmler, G., Zuehlke, S. 2009. Degradation of a chiral nonylphenol isomer in two agricultural soils. Environmental Pollution, 157(6), 1904-1910.
指導教授 羅南德(Roland Kirschner) 審核日期 2017-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明