博碩士論文 101286002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.145.74.54
姓名 鍾宏彬(Hung-Pin Chung)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 量子與積體鈮酸鋰光路與結構晶疇元件研究
(The study of quantum and integrated optical circuits and domain structured devices in lithium niobate)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究
★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究
★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究
★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文之主要貢獻於利用結合高非線性轉換效率之週期性或非週期性極化反轉鈮酸鋰材料、低損耗光學波導、積體化高速調制電極設計之元件,延承傳統非線性光參量轉換系統,拓展至量子光源系統的開發與研究,本論文收錄之各項研究主題條列如下:。
主題一、非週期極化反轉鈮酸鋰電光可調多波長光參量產生器。
主題二、電光波譜可剪裁之內腔式光參量共振器。
主題三、高速鈮酸鋰電光調制器陣列。
主題四之一、超寬頻絕熱光傳輸之鈦擴散式鈮酸鋰波導元件。
主題四之二、超寬頻非對稱絕熱耦合器之雙光子量子偏振態製備元件。
主題五、量子積體光源元件實驗。
論文中分別於第一章至第二章介紹了鈮酸鋰特性與此元件應用範疇、設計與製作原理。第三章節分別介紹了非週期性鈮酸鋰之訊號頻譜電光可調之光參量產生器與共振器之實驗。此外,於第四章節,展示了高頻陣列式電光鈮酸鋰光學強度調制器設計、製作與量化結果。另一方面,本論文第五章節分別收錄了基於絕熱耦合光學傳輸過程所設計製作之高寬頻光學絕熱定向耦合器、可應用於配置量子偏振態之偏振與波長相依之寬頻非對稱性絕熱耦合器,以及基於鈦擴散週期性極化反轉鈮酸鋰光學波導元件之量子光源之量子態定量研究,其中包含:傳統非線性和頻產生過程與同步光參量下轉換之對應實驗、量子光源特性檢驗實驗與配合二維超表面材料之量子偏振態之量子斷層掃描實驗。另一方面,趨向完全積體化電光可調之量子偏振糾纏光源之草擬設計已初步完成,此部分收錄於第六章第二小節之未來工作中。
結語:量子糾纏之背後明確物理機制目前尚未明朗,宇宙萬物於時代更迭中,過去、現在與未來的時間之矢,是否需要重新定義,而四維時空之概念是否為具體之完整解釋,此須待後繼者持續的鑽研與付出,解答或許將會被趨近,但也或許,宇宙從未輕易使人們能得到所謂的解答。由個人趨向群體的集體智慧,使我們持續成長、了解並且領悟。
摘要(英)
The major contribution of my thesis is proposed a concept of demonstrating the fully integrated quantum optical circuits from the classical optical parametric down conversion process to the novel quantum approach of adiabatic coupling and entangled photon-pairs generation systems based on a domain-engineered lithium niobate crystals with high electro-optically tunable and modulation ability and corresponded diffused-type waveguide devices. With close teamwork of the R&D and fabrication groups of Professor Chen, Yen-Hung laboratory in National Central University, the member of Polaris photonic Co. Ltd. and the resource of Professor Dragomir Neshev laboratory in Nonlinear Physics Centre, Australian National University for quantum light source qualifications. We demonstrated several systems or devices in 2012-2017, which all have the potential market value. The topics of this thesis are divided to topic I to V as the following:

Topic Research
I Electro-optical tunable, multi-wavelength optical parametric generators in aperiodically poled Lithium Niobate.
II Electro-optically spectrum tailorable intracavity optical parametric oscillator.
III High-speed Lithium Niobate Electro-optical modulators array.
IV-1 Ultra-broadband adiabatic light transfer in titanium diffused Lithium
Niobate waveguides.
IV-2 Ultra-broadband asymmetric adiabatic coupler for two-photon quantum-polarization state preparation.
V Experiments of quantum integrated optical circuits.

In final, we proposed a concept of the fully integrated quantum optical polarization state preparation based on titanium-diffused, domain-engineered lithium niobate waveguide device on the second section of the chapter 6.

Epilogue:
The clear physical mechanism of quantum entanglement is still not yet clear, this universe is in the era of change, for the past, present or future, is the definition of time arrow needed to be redefine? Is the four-dimensional space-time enough to describe the universes? It needs more sustained research and contribution of all successors, the answer may be approached, but maybe, the universe never made it easy for people to get the so-called answers. What we can do is, from personal research to the collective intelligence, so that, we hope we can continue to grow, understand and comprehend “the universe”.
關鍵字(中) ★ 量子光源
★ 光學積體元件
★ 光學波導
★ 鈮酸鋰
關鍵字(英) ★ Quantum light source
★ Integrated optical circuits
★ Optical waveguides
★ Lithium Niobate
論文目次
摘 要 i
Abstract ii
Table of Contents iv
List of Figures vii
List of Tables xi
List of Publications xii
Explanation of Symbols xvii
Chapter 1、Introduction - 1 -
Chapter 2、Principle and Methods - 5 -
2-1 Lithium Niobate devices - 5 -
2-1-1 Lithium Niobate crystals - 5 -
2-1-2 Application of Lithium Niobate devices - 6 -
2-2 Electro-optical (EO) effect - 7 -
2-2-1 EO effect in Lithium Niobate crystals - 7 -
2-2-2 Electro-Optical Polarization-Mode Converter, EOPMC - 8 -
2-3 Waveguides - 12 -
2-3-1 Characteristic and advantage of waveguide devices - 12 -
2-3-2 Type of waveguides in Lithium Niobate crystals - 13 -
2-3-3 Modeling and design - 14 -
2-3-3-1 Effective index method - 15 -
2-3-3-2 Beam propagation method - 16 -
2-3-3-3 Half-wave voltage modeling - 17 -
2-3-3-4 High-speed modulation modeling - 19 -
2-3-3-5 Design of a single-mode waveguide - 21 -
2-3-4 Waveguide fabrication on Lithium Niobate crystals - 23 -
2-3-4-1 Ti-diffused waveguides - 23 -
2-3-4-2 Proton-Exchange (PE) type waveguides - 27 -
2-3-5 Test method - 30 -
2-3-5-1 Index profile measurement - 30 -
2-3-5-2 Mode size and aspect ratio - 31 -
2-3-5-3 Coupling efficiency - 32 -
2-3-5-4 Losses - 34 -
2-4 Nonlinear optical processes - 35 -
2-4-1 Nonlinear optical generation - 35 -
2-4-1-1 Sum-Frequency Generation, SFG - 36 -
2-4-1-2 Spontaneous Parametric Down-Conversion, SPDC - 38 -
2-4-1-3 Optical Parametric Oscillator, OPO - 39 -
2-4-2 Birefringence Phase-Matching, BPM - 39 -
2-4-3 Quasi-Phase-Matching, QPM - 41 -
2-4-3-1 (A)Periodically Poled Lithium Niobate, (A)PPLN - 42 -
2-4-3-2 QPM in domain-engineered LN waveguides - 42 -
2-4-4 Multi-QPM design - 43 -
2-4-4-1 Aperiodic Optical Structure, AOS - 44 -
2-4-4-2 Simulated-Annealed method, SA - 44 -
2-4-5 Fabrication of domain-engineered LiNbO3 devices - 46 -
2-5 Summary - 47 -
Chapter 3、Aperiodic Optical Structure in EO APPLN OPG/OPO - 48 -
3-1 Topic I: EO tunable, multi-wavelength OPGs in APPLN - 49 -
3-1-1 Multi-wavelength EO phase-matching tuning - 49 -
3-1-2 Design, simulation and experiments - 51 -
3-1-3 Results - 55 -
3-2 Topic II: Electro-optically spectrum tailorable IOPO - 57 -
3-2-1 Electro-optically spectrum tailorability, EOST - 58 -
3-2-2 Design, simulation and experiments - 59 -
3-2-3 Results and applications - 63 -
3-3 Summary - 64 -
Chapter 4、Integrated Optical Circuit, IOC - 66 -
4-1 Topic III: High-speed Lithium Niobate EO modulators array - 66 -
4-1-1 Principle and design - 66 -
4-1-2 Modulation performance simulation (RLCG method) - 67 -
4-1-3 Array-type intensity modulators - 69 -
4-2 Summary - 72 -
Chapter 5、Quantum Integrated Optical Circuits, QIOCs - 73 -
5-1 Topic IV: Light adiabatic transfer devices - 75 -
5-1-1 Adiabatic coupling - 75 -
5-1-2 Topic IV-1, Ultra-broadband adiabatic light transfer in titanium diffused Lithium Niobate waveguides - 77 -
5-1-3 Topic IV-2, Ultra-broadband asymmetric adiabatic coupler for two-photon quantum-polarization state preparation - 80 -
5-2 Topic V: Experiments of quantum integrated optical circuits - 87 -
5-2-1 Ti-diffused PPLN waveguide (Ti:PPLN/W) QIOC - 88 -
5-2-2 Type-II SFG Ti:PPLN/W characteristic - 89 -
5-2-3 SFG-SPDC analogy - 91 -
5-2-4 Quantum entanglement and quantum tomography - 95 -
5-2-5 Quantum source experiment of metasurface (MS) - 105 -
5-3 Summary - 110 -
Chapter 6、Conclusion and future outlook - 113 -
6-1 Conclusion - 113 -
6-2 Future outlook - 116 -
References - 119 -
參考文獻

References
[1] López-Higuera, José Miguel, ed. Handbook of optical fibre sensing technology. Wiley, 2002.
[2] Keiser, Gerd. Optical fiber communications. McGraw-Hill Science, Engineering & Mathematics, 1983.
[3] Mukherjee, Biswanath. Optical communication networks. McGraw-Hill Companies, 1997.
[4] Wooten, Ed L., et al. "A review of lithium niobate modulators for fiber-optic communications systems." IEEE Journal of selected topics in Quantum Electronics 6.1 (2000): 69-82.
[5] Gower, Malcolm C. "Industrial applications of laser micromachining." Optics Express 7.2 (2000): 56-67.
[6] Lubatschowski, Holger, et al. "Ultrafast laser pulses for medical applications." High-Power Lasers and Applications. International Society for Optics and Photonics, 2002.
[7] Daugman, John G. "Biometric personal identification system based on iris analysis." U.S. Patent No. 5,291,560. 1 Mar. 1994.
[8] Brackett, Charles A. "Dense wavelength division multiplexing networks: Principles and applications." IEEE Journal on Selected Areas in Communications 8.6 (1990): 948-964.
[9] Wooten, Ed L., et al. "A review of lithium niobate modulators for fiber-optic communications systems." IEEE Journal of selected topics in Quantum Electronics 6.1 (2000): 69-82.
[10] Korotky, S. K., et al. "Optical intensity modulation to 40 GHz using a waveguide electro‐optic switch." Applied physics letters 50.23 (1987): 1631-1633.
[11] Shen, Yonghang, et al. "PPMgLN-Based High-Power Optical Parametric Oscillator Pumped by Yb3+-Doped Fiber Amplifier Incorporates Active Pulse Shaping." IEEE Journal of Selected Topics in Quantum Electronics 15.2 (2009): 385-392.
[12] Richardson, D. J., J. Nilsson, and W. A. Clarkson. "High power fiber lasers: current status and future perspectives [Invited]." JOSA B 27.11 (2010): B63-B92.
[13] Savage, Neil. "Optical parametric oscillators." Nature Photonics 4.2 (2010): 124-125.
[14] Oesterling, Lee, et al. "Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components." Journal of Modern Optics 62.20 (2015): 1722-1731.
[15] Weis, R. S., and T. K. Gaylord. "Lithium niobate: summary of physical properties and crystal structure." Applied Physics A: Materials Science & Processing 37.4 (1985): 191-203.
[16] Volk, T., N. Rubinina, and M. Wöhlecke. "Optical-damage-resistant impurities in lithium niobate." JOSA B 11.9 (1994): 1681-1687.
[17] Furukawa, Y., et al. "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations." Applied Physics Letters 77.16 (2000): 2494-2496.
[18] EKSMA Optics, http://eksmaoptics.com/.
[19] Thorlabs, https://www.thorlabs.com/.
[20] Lin, Dejiao, et al. "Large aperture PPMgLN based high-power optical parametric oscillator at 3.8 µm pumped by a nanosecond linearly polarized fiber MOPA." Optics express 20.14 (2012): 15008-15014.
[21] Orr, B. J., Y. He, and R. T. White. "Spectroscopic applications of tunable optical parametric oscillators." Tunable Laser Applications (2009): 15-95.
[22] Shcherbakov, Alexandre S., Adán Omar Arellanes, and Emanuele Bertone. "Advanced collinear LiNbO3 acousto-optical filter for astrophysical spectroscopy in the near-ultraviolet: exploring high-spectral resolution." Journal of Astronomical Telescopes, Instruments, and Systems 1.4 (2015): 045002-045002.
[23] Le Gouët, Julien, et al. "Experimental realization of phase-conjugate optical coherence tomography." Optics letters 35.7 (2010): 1001-1003.
[24] Arditty, H. J., and H. C. Lefevre. "Theoretical basis of Sagnac effect in fiber gyroscopes." Fiber-Optic Rotation Sensors and Related Technologies. Springer Berlin Heidelberg, 1982. 44-51.
[25] Lefevre, H. C. "The Fiber-optic Gyroscope 1Artech." Boston 19932 (1993): 107-132.
[26] Chen, Y. H., et al. "Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate." Optics communications 223.4 (2003): 417-423.
[27] Chang, C. L., et al. "Monolithically integrated multi-wavelength filter and second harmonic generator in aperiodically poled lithium niobate." Optics express 16.22 (2008): 18535-18544.
[28] Chang, W. K., et al. "Two-dimensional PPLN for simultaneous laser Q-switching and optical parametric oscillation in a Nd: YVO 4 laser." Optics express 19.24 (2011): 23643-23651.
[29] Chang, J. W., et al. "Characterization and analysis of finite-beam Bragg diffraction in a periodically poled lithium niobate electro-optic grating." Applied optics 53.24 (2014): 5312-5321.
[30] Suhara, T., H. Okabe, and M. Fujimura. "Generation of polarization-entangled photons by type-II quasi-phase-matched waveguide nonlinear-optic device." IEEE Photonics Technology Letters 19.14 (2007): 1093-1095.
[31] Fujii, Go, et al. "Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide." Optics express 15.20 (2007): 12769-12776.
[32] Suhara, Toshiaki. "Generation of quantum‐entangled twin photons by waveguide nonlinear‐optic devices." Laser & Photonics Reviews 3.4 (2009): 370-393.
[33] Ehret, G., et al. "Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere." Applied Physics B: Lasers and Optics 67.4 (1998): 427-431.
[34] Spigulis, Janis, et al. "Simultaneous recording of skin blood pulsations at different vascular depths by multiwavelength photoplethysmography." Applied optics 46.10 (2007): 1754-1759.
[35] Wirth, Martin, et al. "The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance." Applied Physics B: Lasers and Optics 96.1 (2009): 201-213.
[36] Liu, Z. S., et al. "An incoherent Doppler lidar for ground-based atmospheric wind profiling." Applied Physics B: Lasers and Optics 64.5 (1997): 561-566.
[37] Baxter, G. W., H-D. Barth, and B. J. Orr. "Laser spectroscopy with a pulsed, narrowband infrared optical parametric oscillator system: a practical, modular approach." Applied Physics B: Lasers and Optics 66.5 (1998): 653-657.
[38] Weis, R. S., and T. K. Gaylord. "Lithium niobate: summary of physical properties and crystal structure." Applied Physics A: Materials Science & Processing 37.4 (1985): 191-203.
[39] Yariv, Amnon, and Pochi Yeh. Optical waves in crystals. Vol. 10. Wiley, New York, 1984.
[40] Chou, Ming-Hsien. Optical frequency mixers using three-wave mixing for optical fiber communications. Diss. Stanford University, 1999.
[41] Hocker, G. B., and William K. Burns. "Mode dispersion in diffused channel waveguides by the effective index method." Applied Optics 16.1 (1977): 113-118.
[42] Hocker, G., and W. Burns. "Modes in diffused optical waveguides of arbitrary index profile." IEEE Journal of Quantum Electronics 11.6 (1975): 270-276.
[43] Van Roey, J., J. Van der Donk, and P. E. Lagasse. "Beam-propagation method: analysis and assessment." Josa 71.7 (1981): 803-810.
[44] Haxha, Shyqyri, BM Azizur Rahman, and Kenneth TV Grattan. "Bandwidth estimation for ultra-high-speed lithium niobate modulators." Applied optics 42.15 (2003): 2674-2682.
[45] Lefèvre, Hervé C. "The fiber-optic gyroscope, a century after Sagnac′s experiment: The ultimate rotation-sensing technology?." Comptes Rendus Physique 15.10 (2014): 851-858.
[46] Schmidt, R. V., and I. P. Kaminow. "Metal‐diffused optical waveguides in LiNbO3." Applied Physics Letters 25.8 (1974): 458-460.
[47] Korotky, S., et al. "Mode size and method for estimating the propagation constant of single-mode Ti: LiNbO3 strip waveguides." IEEE Journal of Quantum Electronics 18.10 (1982): 1796-1801.
[48] Jackel, Janet L., C. E. Rice, and J. J. Veselka. "Proton exchange for high‐index waveguides in LiNbO3." Applied Physics Letters 41.7 (1982): 607-608.
[49] Vohra, Sandeep T., Alan R. Mickelson, and Sally E. Asher. "Diffusion characteristics and waveguiding properties of proton‐exchanged and annealed LiNbO3 channel waveguides." Journal of Applied Physics 66.11 (1989): 5161-5174.
[50] Chanvillard, L., et al. "Soft proton exchange on periodically poled LiNbO3: A simple waveguide fabrication process for highly efficient nonlinear interactions." Applied Physics Letters 76.9 (2000): 1089-1091.
[51] Chiang, Kin Seng, et al. "Refractive-index profiling of graded-index planar waveguides from effective indexes measured with different external refractive indexes." Journal of lightwave technology 18.10 (2000): 1412-1417.
[52] Artiglia, M., et al. "Mode field diameter measurements in single-mode optical fibers." Journal of Lightwave Technology 7.8 (1989): 1139-1152.
[53] Albert, Jacques, and Gar Lam Yip. "Insertion loss reduction between single-mode fibers and diffused channel waveguides." Applied optics 27.23 (1988): 4837-4843.
[54] Kostritskii, S. M. "Photorefractive effect in LiNbO3-based integrated-optical circuits at wavelengths of third telecom window." Applied Physics B: Lasers and Optics 95.3 (2009): 421-428.
[55] Boyd, Robert W. "Nonlinear optics." Handbook of Laser Technology and Applications (Three-Volume Set). Taylor & Francis, 2003. 161-183.
[56] Bosenberg, Walter R., et al. "93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator." Optics letters 21.17 (1996): 1336-1338.
[57] Becouarn, L., et al. "Cascaded second-harmonic and sum-frequency generation of a CO 2 laser by use of a single quasi-phase-matched GaAs crystal." Optics letters 23.19 (1998): 1508-1510.
[58] Zhu, Shi-ning, Yong-yuan Zhu, and Nai-ben Ming. "Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice." Science 278.5339 (1997): 843-846.
[59] Asobe, Masaki, et al. "Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure." Optics letters 28.7 (2003): 558-560.
[60] Lai, Jui-Yu, et al. "Engineered multiwavelength conversion using nonperiodic optical superlattice optimized by genetic algorithm." Optics express 18.5 (2010): 5328-5337.
[61] Gu, Ben-Yuan, et al. "Enhanced harmonic generation in aperiodic optical superlattices." Applied physics letters 75.15 (1999): 2175-2177.
[62] Chou, P. Y., et al. "Two-dimensional aperiodic nonlinear photonic crystal in a dual-wavelength Nd: YVO4 laser for pulsed orange generation." Optics express 22.23 (2014): 28857-28864.
[63] Chen, Y. H., et al. "Electro-optically tunable, multi-wavelength optical parametric generators in aperiodically poled lithium niobates." Optics express 20.27 (2012): 28989-29001.
[64] Chung, H. P., et al. "Electro-optically spectrum tailorable intracavity optical parametric oscillator." Optics letters 40.22 (2015): 5132-5135.
[65] Giordmaine, J. A., and Robert C. Miller. "Tunable coherent parametric oscillation in LiNbO3 at optical frequencies." Physical Review Letters 14.24 (1965): 973.
[66] Myers, Lawrence E., et al. "Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3." Optics letters 21.8 (1996): 591-593.
[67] Powers, P. E., Thomas J. Kulp, and S. E. Bisson. "Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design." Optics letters 23.3 (1998): 159-161.
[68] Harris, Stephen E. "Tunable optical parametric oscillators." Proceedings of the IEEE 57.12 (1969): 2096-2113.
[69] Krivoshchekov, G. V., et al. "Influence of the Electro-optical Effect on the Frequency of a Parametric Laser with a KDP Crystal." SOVIET PHYSICS JETP 28.3 (1969).
[70] Lu, Yan-qing, et al. "Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect." Applied physics letters 74.1 (1999): 123-125.
[71] O’Brien, Ned, et al. "Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator." Optics letters 24.23 (1999): 1750-1752.
[72] Ngai, A. K. Y., et al. "Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection." Applied Physics B: Lasers and Optics 85.2 (2006): 173-180.
[73] Yu, Chi-Sheng, and A. H. Kung. "Grazing-incidence periodically poled LiNbO3 optical parametric oscillator." JOSA B 16.12 (1999): 2233-2238.
[74] Saikawa, Jiro, et al. "High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating." Optics letters 32.20 (2007): 2996-2998.
[75] Chen, Yen-Hung, et al. "Spectral narrowing and manipulation in an optical parametric oscillator using periodically poled lithium niobate electro-optic polarization-mode converters." Optics letters 36.12 (2011): 2345-2347.
[76] Heinrich, Wolfgang. "Quasi-TEM description of MMIC coplanar lines including conductor-loss effects." IEEE transactions on microwave theory and techniques 41.1 (1993): 45-52.
[77] Marks, Roger B., and Dylan F. Williams. "Characteristic impedance determination using propagation constant measurement." IEEE Microwave and Guided Wave Letters 1.6 (1991): 141-143.
[78] Ghione, Giovanni, et al. "Microwave modeling and characterization of thick coplanar waveguides on oxide-coated lithium niobate substrates for electrooptical applications." IEEE Transactions on microwave theory and techniques 47.12 (1999): 2287-2293.
[79] Noguchi, K., H. Miyazawa, and O. Mitomi. "Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100GHz Ti: LiNbO/sub 3/optical modulator." Electronics letters 34.7 (1998): 661-663.
[80] Zhang, Jingjing, and Thomas Y. Hsiang. "Extraction of subterahertz transmission-line parameters of coplanar waveguides." Piers Online 3.7 (2007): 1102-1106.
[81] Della Valle, G., et al. "Adiabatic light transfer via dressed states in optical waveguide arrays." Applied Physics Letters 92.1 (2008): 011106.
[82] Paspalakis, Emmanuel. "Adiabatic three-waveguide directional coupler." Optics communications 258.1 (2006): 30-34.
[83] Tseng, Shuo-Yen, and Yao-Wun Jhang. "Fast and robust beam coupling in a three waveguide directional coupler." IEEE Photonics Technology Letters 25.24 (2013): 2478-2481.
[84] Wu, Che Wen, et al. "Photon pair generation and pump filtering in nonlinear adiabatic waveguiding structures." Optics letters 39.4 (2014): 953-956.
[85] Salandrino, Alessandro, et al. "Analysis of a three-core adiabatic directional coupler." Optics Communications 282.23 (2009): 4524-4526.
[86] Alferness, R. C., R. V. Schmidt, and E. H. Turner. "Characteristics of Ti-diffused lithium niobate optical directional couplers." Applied Optics 18.23 (1979): 4012-4016.
[87] Oesterling, Lee, et al. "Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components." Journal of Modern Optics 62.20 (2015): 1722-1731.
[88] Chung, H. P., et al. "Adiabatic light transfer in titanium diffused lithium niobate waveguides." Optics express 23.24 (2015): 30641-30650.
[89] Schneider, Vitor Marino, and Haroldo T. Hattori. "Wavelength insensitive asymmetric triple mode evolution couplers." Optics communications 187.1 (2001): 129-133.
[90] Becker, R. A., and R. C. Williamson. "Photorefractive effects in LiNbO3 channel waveguides: Model and experimental verification." Applied Physics Letters 47.10 (1985): 1024-1026.
[91] Boyd, Robert W. "Nonlinear optics." Handbook of Laser Technology and Applications (Three-Volume Set). Taylor & Francis, 2003. 161-183.
[92] Fejer, Martin M., et al. "Quasi-phase-matched second harmonic generation: tuning and tolerances." IEEE Journal of Quantum Electronics 28.11 (1992): 2631-2654.
[93] Suhara, Toshiaki, and Hiroki Kintaka. "Quantum theory analysis of twin-photon beams generated by parametric fluorescence." IEEE journal of quantum electronics 41.9 (2005): 1203-1212.
[94] Lenzini, Francesco, et al. "Direct characterization of a nonlinear photonic circuit′s wave function with laser light." arXiv preprint arXiv:1703.01007 (2017).
[95] James, Daniel FV, et al. "Measurement of qubits." Physical Review A 64.5 (2001): 052312.
[96] Hong, C. K., Zhe-Yu Ou, and Leonard Mandel. "Measurement of subpicosecond time intervals between two photons by interference." Physical Review Letters 59.18 (1987): 2044.
[97] Usmani, Imam, et al. "Heralded quantum entanglement between two crystals." Nature Photonics 6.4 (2012): 234-237.
[98] Martin, Anthony, et al. "Integrated optical source of polarization entangled photons at 1310 nm." Optics express 17.2 (2009): 1033-1041.
[99] Martin, Anthony, et al. "A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength." New Journal of Physics 12.10 (2010): 103005.
[100] Suhara, Toshiaki. "Generation of quantum‐entangled twin photons by waveguide nonlinear‐optic devices." Laser & Photonics Reviews 3.4 (2009): 370-393.
[101] Sharapova, P. R., et al. "Generation and active manipulation of qubits in LiNbO3-based integrated circuits." arXiv preprint arXiv:1704.03769 (2017).
[102] Huang, C. Y., et al. "Electro-optic Ti: PPLN waveguide as efficient optical wavelength filter and polarization mode converter." Optics express 15.5 (2007): 2548-2554.
[103] Chen, Xianfeng, et al. "Electro-optic Solc-type wavelength filter in periodically poled lithium niobate." Optics letters 28.21 (2003): 2115-2117.
[104] Yang Song-Lin, “Electro-Optically Switched Directional Couplers with Polarization-Mode Control in Periodically Poled Ti: LiNbO3 Waveguides.” 2013. Master Thesis. National Central University.
指導教授 陳彥宏 審核日期 2017-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明