博碩士論文 101296001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.235.179.111
姓名 林正軒(Cheng-hsuan Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 三維表面電漿元件光電轉換特性之研究
(Three Dimensional Surface Plasmon Resonance Device for the Application of Optoelectronic Transformation)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 將太陽光轉換成電能的太陽能電池,是二十一世紀面對能源危機,尋找替代能源中相當重要的研究方向。光電轉換的技術有許多不同方式,有光伏元件(photovoltaic cells)、整流天線(rectenna, rectifying antenna)等。本論文主要研究由整流天線改良的金屬-絕緣層-金屬(Metal-Insulator-Metal
, MIM)結構,此結構可以直接轉換可見光波長的能量。

  MIM表面電漿結構的光電轉換,主要利用表電漿耦合機制與熱載子穿隧效應兩種方式。其中,隨著近年來奈米技術的純熟,極薄的膜層(<15 nm)都可以被實現後,由MIM結構各層厚度所決定的熱載子穿隧位能障壁已可自由調整。在產生表面電漿的偶合機制上,傳統的菱鏡耦合法對於入射光有特定角度的限制;而對於結構式二維光柵結構MIM元件,雖突破了入射光特定角度了限制條件,但又發現若要產生表面電漿共振,其結構對於入射光的偏振態有所篩選。

  綜合以上種種限制條件,本論文題出了三維結構的構思:我們利用陽極氧化鋁法製作了二維的奈米孔洞膜板後,結合自我複製式成膜技術設計並完成了三維MIM表面電漿元件。根據量測結果,除了成功觀察到表面電漿的吸收光譜可在可見光波段的高頻區外,此結構也成功突破特定角度、特定偏振的限制;相比於稜鏡耦合法的平板MIM元件,此研究成果大大縮小了整體元件大小;而且在光電轉換的效率上,相比與結構式的二維MIM元件更超過了一個數量級。其中,我們更發現此三維MIM表面電漿結構對應不同的入射光波長時可產生不同強度光電流的特殊現象。
摘要(英) There are several techniques can transit solar energy as electrical energy, such as solar cell, photodiode or rectenna. Based on the surface plasmonic effect and the hot carrier transportation, the metal-insulator-metal device (MIM) was employed to convert the solar spectrum from the ranges of visible light to infrared region in this study.
In this research, the MIM device was fabricated on an anodic aluminum oxide (AAO) template. The uniform pore size and period of the AAO can be achieved by using the multi-electrolyte-step process. The auto-cloning technique was applied to achieve the three-dimensional MIM. Besides, the Finite Difference Time Domain (FDTD) method was used to simulate the properties the three-dimensional device and realize its plasmonic effect.

Finally, the power conversion efficiency (PCE) 1.34E-03 % of the three-dimensional MIM was achieved under an AM 1.5 solar simulator. And we find the photocurrent of the MIM device is corresponding to the wavelength of the incident light.
關鍵字(中) ★ 金屬-絕緣層-金屬
★ 表面電漿元件
★ 陽極氧化鋁
★ 換酸製程
★ 自我複製技術
關鍵字(英) ★ Metal-Insulator-Metal (MIM)
★ anodic aluminum oxide (AAO)
★ multi-electrolyte-step process (MES)
★ Auto-cloning technique
★ Finite Difference Time Domain (FDTD)
論文目次 摘要 v
Astarte vi
致謝 vii
目錄 viii
圖目錄 xi
表目錄 xv

第一章 緒論 1
1-1 文獻探討 1
1-2 研究目的 3
1-3 本文架構 4
第二章 表面電漿基礎理論 6
2-1 光電轉換機制 6
2-2 金屬的介電函數 6
2-3 表面電漿理論 12
2-4 MIM元件工作原理 19
2-5 三維MIM表面電漿元件結構 24
第三章 三維MIM表面電漿元件模擬設計 25
3-1 有限時域差分法 25
3-1-1 初階設計-膜堆、材料 31
3-1-2 進階設計-MIM元件設計 32
3-2 MIM元件材料選定與比較 34
3-3 模擬參數設定與優化 38
3-2-1 週期模擬 39
3-2-2 下金屬厚度模擬 41
3-2-3 絕緣層厚度模擬 42
3-2-4 上金屬厚度模擬 43
3-4 模擬再優化與討論 44
第四章 儀器設備 47
4-1 製程儀器介紹 47
4-1-1 AAO治具 47
4-1-2 雙電子槍蒸鍍離子源輔助蒸鍍系統 48
4-1-3 熱蒸發蒸鍍鍍膜系統 49
4-1-4 原子層沉積 49
4-2 量測儀器介紹 51
4-2-1 太陽能光源模擬器 51
4-2-2 U4100光譜 51
4-2-3 SEM電子顯微鏡 52
第五章 三維MIM表面電漿元件製作 53
5-1 基板清洗: 53
5-2 鋁膜鍍製 53
5-3 換酸陽極氧化鋁法製備奈米孔洞陣列[37-39] 54
5-4 單層自我複製結構模 55
5-5 MIM元件各層鍍膜 58
第六章 三維MIM表面電漿元件量測與分析 59
6-1 結構分析 59
6-2 量測結果 62
6-3 共振波長對應光電流方向量測結果 65
第七章 結論與未來展望 70

參考文獻 71
參考文獻 [1]
R. L. Bailey, "A Proposed New Concept for a Solar-Energy Converter," Journal of Engineering for Gas Turbines and Power, vol. 94, pp. 5, 1972.

[2]
A. M. Marks and M. Athol, "Device for conversion of light power to electric power," United States Patent and Trademark Office 1984.

[3]
G. H. Lin, R. Abdu, and J. O. M. Bockris, "Investigation of resonance light absorption and rectification by subnanostructures," Journal of Applied Physics, vol. 80, pp. 565-568, 1996.

[4]
L. O. Hocker, "Frequency Mixing in the Infrared and Far-Infrared Using a Metal-to-Metal Point Contact Diode," Applied Physics Letters, vol. 12, pp. 401, 1968.
[5]
J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, and D. L. Smythe, "ac electron tunneling at infrared frequencies: Thin-film M-O-M diode structure with broad-band characteristics," Applied Physics Letters, vol. 24, pp. 275-279, 1974.

[6]
B. Berland, "Photovoltaic technologies beyond the horizon: optical rectenna solar cell," National Renewable Energy Laboratory, 2003.

[7]
S. Krishnan, H. L. Rosa, E. Stefanakos, S. Bhansali, and K. Buckle, "Design and development of batch fabricatable metal-insulator-metal diode and microstrip slot antenna as rectenna elements," Sensors and Actuators A: Physical, vol. 142, pp. 40-47, 2008.

[8]
P. Esfandiari, "Tunable antenna-coupled metal-oxide-metal uncooled IR detector," SPIE, Infrared technology and applications XXXI
Conference, 2005.

[9]
M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, "Solar spectrum rectification using nano-antennas and tunneling diodes," SPIE, Optoelectronic Integrated Circuits XII, 2010.

[10]
B. J. Eliasson, "Metal-Insulator-Metal Diodes For Solar Energy Conversion," Master Thesis, Department of Electrical and Computer Engineering, University Colorado at Boulder, 2001.

[11]
D. Kovacs, J. Winter, S. Meyer, A. Wucher, and D. Diesing, "Photo and particle induced transport of excited carriers in thin film tunnel junctions," Physical Review B, vol. 76, pp. 235408, 2007.

[12]
M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, "Solar spectrum rectification using nano-antennas and tunneling diodes," SPIE, Optoelectronic Integrated Circuits XII, 2010.

[13]
T. George, I. T. Wu, N. Kislov, J. Wang, M. S. Islam, and A. K. Dutta, "Metal-insulator-metal tunneling diode for uncooled infrared high-speed detectors," SPIE, Micro- and Nanotechnology Sensors,
Systems, and Applications II, 2010.

[14]
M. J. Preiner, K. T. Shimizu, J. S. White, and N. A. Melosh, "Efficient optical coupling into metal-insulator-metal plasmon modes with subwavelength diffraction gratings," Applied Physics Letters, vol. 92, p. 113109, 2008.

[15]
黃偉真, "金屬表面電漿元件於光電轉換之應用," 碩士論文, 光電科學與工程學系, 國立中央大學, 2013.

[16]
F. Wang and N. A. Melosh, "Plasmonic energy collection through hot carrier extraction," Nano Letter, vol. 11, pp. 5426-30,2011.

[17]
F. Wang and N. A. Melosh, "Theoretical analysis of hot electron collection in metal-insulator-metal devices," SPIE, Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion II, 2011.

[18]
張阜權, 孫榮山, and 唐偉國, "光學," 亞東出版, 1998,

[19]
Guru and Hiziroglu, “電磁學理論基礎/Electromagnetic Field Theory Fundamentals,” 高立圖書有限公司, 2005.

[20]
顏嘉宏, "表面電漿共振系統之相位擷取與分析," 碩士論文, 光電科學與工程學系,國立中央大學, 2009.

[21]
邱國斌 and 蔡定平, "金屬表面電漿簡介," 物理雙月刊, 二十八卷二期, 2006
[22]
吳民耀 and 劉威志, "表面電漿子理論與模擬," 物理雙月刊, 二十八卷二期, 2006.

[23]
R. Wood, "On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum," London Proceedings of the Physical Society, 1902.

[24]
U. Fano, "The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld′s Waves)," Journal of the Optical Society of America, vol. 31, p. 10, 1941.

[25]
A. Otto, "Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection," Zeitschrift ffir Physik, vol. 216, pp. 398-410, 1968.

[26]
E. Kretschmann, "The determination of the surface roughness of thin layers by measuring the angular dependence of the scattered radiation of surface plasma oscillations," Optics Communications, vol. 10, pp. 353-356, 1974.

[27]
F. Wang and N. A. Melosh, "Supplementary Information for Plasmonic Energy Collection through Hot Carrier Extraction," Nano Letter, vol.11, pp. 5426–30, 2011.

[28]
K. H. Gundlach, "Theory of metal-insulator-metal tunneling for a simple two-band model," Journal of Applied Physics, vol. 44, pp. 5005, 1973.

[29]
J. Robertson and C. W. Chen, "Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate," Applied Physics Letters, vol. 74, pp. 1168-1170, 1999.

[30]
M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous couoled-wave analysis of binary gratings," Journal of the Optical Society of America, vol. 12, 1995.

[31]
P. E. Blöchl, "Protector Augmented-Wave Method," Physical Review B, vol.50, pp. 17953, 1994.

[32]
M. Suzuki, "Transfer-matrix method and Monte Cario simulation in quantum spin systems," Physical Review B, vol. 31, pp. 2957, 1985.

[33]
K.S.Yee, "Numerical solution of initial boundary value problems involving Maxwall’s equation in isotropic media," IEEE Transactions Antennas and Propagation, vol. 14, pp.302-307, 1996.

[34]
V. Demir, "Simulation of Electromagnetic Fields: The Finite-Difference Time-Domain Method and Its Applications,”Department of Electrical Engineering, Northern Illinois University, 2010.

[35]
David R D.Penn,"Electron mean free paths for free-electron-like materials," Physical Review B, vol 13, 1976.

[36]
R.N.Stuart, F.Wooton, "Mean free path of hot electrons and holes in metals,"Physical Review latters, vol 10,1963

[37]
A. P. Li,and F. Müller, ”Hexagonal Pore Arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” Journal of Applied Physics Phys. Vol.84,pp. 6023, 1998.

[38]
F. Li, L. Zhang, and R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide,”Chemistry of materials, vol.10, pp. 2470-2480, 1998.

[39]
G. E. Thompson, “Porous Anodic Alumina: Fabrication, Characterization and Application,” Thin Solid Films, vol. 297, pp.192-201, 1997.

[40]
Z. Wang Z, and M. Brust, “Fabrication of nanostructure via self-assembly of nanowires within the AAO template,” Nanoscale Research Letters, vol. 2, pp. 34, 2006.

[41]
B. Yu, Y. Gao, and H. Li, “Fabrication and optical characterization of poly (2,5-di-n-butoxyphenylene) nanofibril arrays,” Journal of Applied Polymer Science, vol. 91, pp. 425 ,2004.

[42]
K. L. Lai, M. H. Hon, and I. C. Leu, “Fabrication of ordered nanoporous anodic alumina prepatterned by mold-assisted chemical etching,” Nanoscale Research Letters, vol. 6, pp. 157, 2011.

[43]
A. Nourmohammadi, S. J. Asadabadi, M. H. Yousefi, and M. Ghasemzadeh, “Photoluminescence mission of nanoporous anodic aluminum oxide films prepared in phosphoric acid,” Nanoscale Research Letters, vol. 7, pp. 689, 2012.

[44]
C. G. Kuo, and C. C. Chen, “Technique for self-Assembly of Tin nano-particles on anodic aluminum oxide (AAO) templates,” Materials Transactions, vol. 50, pp. 1102, 2009.

[45]
W. Chen, J. S. Wu, and X. H. Xia, “Porous anodic alumina with continuously manipulated pore/cell size,” ACS Nano. Vol. 2, pp. 959, 2008.

[46]
O. Sanz, F. J. Echave, J. A. Odriozola, and M. Montes, “Aluminum anodization in oxalic acid: controlling the texture of Al2O3/Al monoliths for catalytic applications,” Industrial & Engineering Chemistry Research, vol. 50, pp. 2117, 2011.

[47]
A. Belwalkara, E. Grasinga, W. V. Geertruyden, Z. Huang, and W. Z. Misioleka, “Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes,” Journal of Membrane Science, vol. 319, pp. 192, 2008.

[48]
S. K. Hwang, S. H. Jeong, H. Y. Hwang, O. J. Lee, and K. H. Le, “Fabrication of highly ordered pore array in anodic aluminum oxide,” Korean Journal of Chemical Engineering, vol. 19, pp. 467473, 2002.

[49]
A. P. Li, F. Mulle, A. Birner, K. Nielsch, and U.Gosele, ”Fabrication and microstructuring of hexagonally ordered two- dimensional nanopore arrays in anodic alumina,” Advanced Materials, vol. 11, pp.483-487, 1999.

[50]
陳君閣, "以陽極處理法製備奈米孔洞陣列光電元件," 博士論文, 光電科學與工程學系, 國立中央大學, 2014.

[51]
C. Y. Liu, A. Datta, and Y. L. Wang,“Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” A Applied Physics Letters, vol. 78, pp. 120, 2001.

[52]
S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, "Fabrication of 3D photonic crystals by autocloning and its applications," Electronics and Communications in Japan Part Ii-Electronics, vol. 82, pp. 43-52, 1999.

[53]
葉渝雯, "自我複製結構膜光學性質之研究," 碩士論文, 光電科學與工程學系, 國立中央大學, 2008.

[54] Sato T., Ohtera Y., Ishino N., Miura K., and Kawakami S., " In-plane light propagation in Ta2O5/SiO2 autocloned photonic crystals," IEEE Journal of quantum electronics, vol. 38, pp. 7, 2002.

[55]
T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura and S. Kawakami, "Photonic crystals for the visible range fabricated by autocloning technique and their application," Optical and Quantum Electronics, vol. 34, pp. 63-70 ,2002.

[56]
Ohtera Y., Onuki T., Inoue Y., Kawakami S., "Multichannel photonic crystal wavelength filter array for near-infrared wavelengths," Journal of lightwave technology, vol. 25, pp. 2, 2007.

[57]
Kim S., Nordin G.P.,Cai J.,Jiang J., "Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure, " Optics Letters, vol. 28, pp. 2384-2386, 2003.
指導教授 陳昇暉(Sheng-hui Chen) 審核日期 2014-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明