博碩士論文 101296003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.235.25.169
姓名 林欣瑩(Hsin-ying Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 螢光粉塗佈圖形對白光 LED 封裝效率之影響研究
(Study of Packaging Efficiency of White LEDs with Different Phosphor Coating Patterns)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 新型光電生化感測器之分析與研究★ 薄膜電晶體液晶顯示器中視角色偏之優化補償方法
★ 特定色度背光模組零組件之光學特性評估★ 電子紙增亮分析與模擬設計
★ CCD 量測儀器之研究與探討★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用
★ 多光束繞射光學元件應用在DVD光學讀取頭之設計★ 高位移敏感度之全像多工光學儲存之研究
★ 利用亂相編碼與體積全像之全光學式光纖感測系統★ 體積光柵應用於微物3D掃描之研究
★ 具有偏極及光強分佈之孔徑的繞射極限的研究★ 三維亂相編碼之體積全像及其應用
★ 透鏡像差的量測與MTF的驗證★ 二位元隨機編碼之全像光學鎖之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文中,將研究高濃度螢光粉塗佈式白光LED封裝體之封裝效率。利用已建構之YAG高濃度螢光粉光學模型,在相同相關色溫下,改變封裝結構之螢光粉塗佈方式、碗杯側壁高度與角度。藉由變動不同模擬參數,探討其對封裝效率之影響並分析原因。接著將進行實際封裝,並與模擬結果做比較,分析其實驗與模擬上之差異性。最後以文獻中的低濃度封裝體為參考,比較其模擬結果與實際封裝體在封裝效率的表現。
摘要(英) In this thesis, we develop the high-concentration white-LED packaging with phosphor matrix. Based on the high-concentration phosphor optical model, we change different phosphor patterns, the height of sidewall of cup, and the angles of sidewall of cup to construct our encapsulation structure under the same correlated color temperature. By varying the different simulation parameters, we analyze how the packaging efficiency will be influenced.
In the following process, we have verification between simulation and experiment in order to analyze their differences. In the end, we consider the literature of low-concentration packaging structure, and compare the performance between simulation and experiment in packaging efficiency.
關鍵字(中) ★ 白光LED
★ 封裝效率
★ 螢光粉
★ 螢光粉塗佈圖形
關鍵字(英) ★ white LED
★ package efficiency
★ phosphor
★ phosphor coating patterns
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1 LED背景 1
1.2 研究動機與目的 3
1.3 論文大綱 7
第二章 基本原理 8
2.1 引言 8
2.2 LED發光原理 8
2.3 螢光粉發光原理 10
2.4 色彩學 12
第三章 低濃度螢光粉模型之建立 15
3.1 引言 15
3.2 螢光粉光學模型 15
3.2.1 螢光粉之散射模型 17
3.2.2 螢光粉之吸收及轉換參數 19
3.2.3 高濃度螢光粉模型之分析與驗證 24
第四章 LED封裝之探討與分析 27
4.1 引言 27
4.2 封裝效率之定義 27
4.2.1 塗佈方式之封裝效率分析 28
4.2.2 封裝結構對封裝效率之影響 39
4.3 實際封裝體之製程與驗證 50
4.3.1高濃度螢光粉陣列封裝體實作與分析 51
4.3.2高濃度陣列噴塗式封裝體與實際Remote封裝體之比較 63
第五章 結論 62
參考文獻 64
中英文名詞對照表 70
參考文獻 [1] M. Josephson, Edison, A Biography (McGraw Hill, New York, 1959).
[2] T. A. Edison, “Electric-Lamp,” United States Patent, US 0223898 (1880).
[3] J. Levy, Really Useful: The Origins of Everyday Things (Firefly Books, New York, 2002).
[4] H. J. Round, “A note on carborundum,” Electrical World 49, 309 (1907).
[5] N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1−xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[6] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
[7] Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of multichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148 (2001).
[8] A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US 6685852 B2 (2004).
[9] Y. H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Opt. Lett. 34, 1-3 (2009).
[10] T. F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflectors and UV-based light source having reduced UV radiation leakage incorporating the same,” United States Patent, US 6686676 B2 (2004).
[11] T. Treurniet and V. Lammens, “Thermal Management in Color Variable Multi-Chip LED Modules,” 22nd IEEE SEMI-THERM, 173-177 (2006).
[12] P. Deurenberg, C. Hoelen, J. van Meurs, and J. Ansems, “Achieving color point stability in RGB multi-chip LED modules using various color control loops,” Proc. SPIE 5941, 59410C (2005).
[13] 陳靜儀,白光LED之螢光粉多功能模型之研究,國立中央大學光電科學與工程學系博士論文,中華民國一百零一年。
[14] 彭逸寧,雙色分層螢光粉光學模型之建立與分析,國立中央大學光電科學與工程學系碩士論文,中華民國一百零一年。
[15] 陳鶴祥,分層雙色白光LED封裝效率及色彩表現之研究,國立中央大學光電科學與工程學系碩士論文,中華民國一百零二年。
[16] LEDinside, http://www.ledinside.com.tw/.
[17] Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-power and high-efficiency InGaN-based light emitters,” IEEE Trans. Electron. Devices 57, 79-87 (2009).
[18] Schnitzer, E. Yablonovitch, C. Carneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light emitting diodes,” Appl. Phys. Lett. 63, 2174-2176 (1993).
[19] D. B. Thompson, A. Murai, M. Iza, S. Brinkley, S. P. DenBaars, U. K. Mishra, and S. Nakamura, “Hexagonal truncated pyramidal light emitting diodes through wafer bonding of ZnO to GaN, laser lift-off, and photh chemical etching,” Jpn. J. Appl. Phys. 47, 3447-3449 (2008).
[20] A. Bergh and R. H. Saul, “Surface roughness of electroluminescent,” United States Patent, US 3739217 (1973).
[21] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855-857 (1999).
[22] S. C. Hsu, C. Y. Lee, J. M. Hwang, J. Y. Su, D. S. Wuu, and R. H. Horng, “Enhanced light output in roughened GaN-based light-emitting diodes using electrodeless photoelectrochemical etching,” IEEE Photonics Technol. Lett. 18, 2472-2474 (2006).
[23] Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic phosphor size dependence of luminous efficacy for typical white LED emitters,” IEEE Photonics Technol. Lett. 23, 552-554 (2011).
[24] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L.Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-312 (2002).
[25] R. C. Jordan, J. Bauer, and H. Oppermann, “Optimized heat transfer and homogeneous color converting for ultra high brightness LED package,” Proc. SPIE 6198, 61980B (2006).
[26] N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A-Appl. Mat. 202, 60-62 (2005).
[27] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes,” Appl. Phys. Lett. 86, 243505 (2005).
[28] 紀葦世,高效能YAG螢光粉之特性量測與模型,元智大學光電工程研究所碩士論文,中華民國九十九年。
[29] 陳正建,白光LED封裝效率與可靠性分析之研究,國立中央大學光電科學與工程學系博士論文,中華民國一百零一年。
[30] 李惇儒,白光LED之封裝效率之研究,國立中央大學光電科學與工程學系碩士論文,中華民國一百年。
[31] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981).
[32] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, New York, 2003).
[33] 孫慶成,光電工程概論,全華圖書股份有限公司,新北市,中華民國一百零一年。
[34] E. F. Schubert, Light-Emitting Diode (Cambridge University Press, Cambridge, 2003).
[35] 劉如熹、劉宇恒,發光二極體用氧氮化螢光粉介紹,全華科技圖書股份有限公司,台北市,中華民國九十五年。
[36] Jaboski, “Efficiency of anti-stokes fluorescence in dyes,” Nature 131, 839-840 (1933).
[37] The Color & Vision Research Laboratory, http://www.cvrl.org/.
[38] Breault Research Organization, Inc., http://www.breault.com/.
[39] 何信穎,白光LED之 YAG 螢光粉光學模型之研究,國立中央大學光電科學研究所碩士論文,中華民國九十六年。
[40] C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060-20066 (2008).
[41] C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[42] S. J. Lee, “Analysis of light-emitting diodes by Monte Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).
[43] Z. Y. Ting and C. McGill, “Monte Carlo simulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545-3553 (1995).
[44] S. A. Schafer, “Quasi-Monte Carlo methods: applications to modeling of light transport in tissue,” Proc. SPIE 2681, 317-324 (1996).
[45] Okuyama, I. W. Lenggoro, and N. Tagami, “Preparation of ZnS and CdS fine particles with different particle sizes by a spray-pyrolysis method,” J. Mater. Sci. 32, 1229-1237 (1997).
[46] Intematix, Inc., http://www.maxgather.com.tw/.
[47] R. Hua, X. Luo, H. Fenga, and S. Liu, “Effect of phosphor settling on the optical performance of phosphor-converted white light-emitting diode,” J. Lumines. 132, 1252-1256 (2012).
[48] D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice Hall, New Jersey, 1988).
[49] Cree, Inc., http://www.cree.com/led-chips-and-materials/chips/.
[50] Q. Fu and W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt. 40, 1354-1361 (2001).
[51] P. Chýlek, “Light scattering by small particles in an absorbing medium,” J. Opt. Soc. Am. 67, 561-563 (1977).
[52] W. Sudiarta and P. Chylek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18, 1275-1278 (2001).
[53] R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-Nitrides,” IEEE J. Sel. Top. Quantum Electron. 8, 339-345 (2002).
指導教授 孫慶成、楊宗勳(Ching-chern Sun Tsung-hsun Yang) 審核日期 2014-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明