博碩士論文 101322009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.236.70.233
姓名 蔡瑞騏(Jui-chi Tsai)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 非線性彈性固體微孔變形特性
相關論文
★ 各種載重作用下neo-Hookean材料微孔動態分析★ 劉氏保群算法於高雷諾數Burgers方程之應用及探討
★ 彈性材料圓孔非對稱變形近似解研究★ HAF描述含圓孔橡膠材料三軸壓縮變形的誤差分析
★ 國立中央大學-HAF描述圓形微孔非對稱變形的誤差計算★ 多微孔橡膠材料受拉變形平面應力分析
★ 鋼絲網加勁高韌性纖維混凝土於RC梁構件剪力補強研究★ 高韌性纖維混凝土(ECC)之材料配比及添加物對收縮及力學性質影響
★ 材料組成比例對超高性能纖維混凝土之工作性與力學性質之影響★ 搜尋週期為四年時使用SDICAE作強震預測的最佳精度設定
★ 牛頓型疊代法二次項效應★ GEH理論壓密量速算式
★ 擴散管流量解析解★ 宏觀收斂迭代法速度比較
★ 二次項效應混合型牛頓疊代法之研究★ 漸增載重之壓密速算公式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 宏觀的角度下,材料可使用連體力學來進行分析。然而,對於宏觀的材料弱化行為,分析時宜加入微觀的損傷行為計算以加深了解。
本研究延續連體力學之基礎概念,並且以有限元素軟體(ABAQUS)來進行分析材料微孔之變形特性。相較於文獻中所得到的解析解以及Hou和Abeyaratne對於圓形孔洞三軸變形之近似解(HAF),此篇用數值模型對橡膠微孔的幾何形狀、外部應力邊界條件做更廣泛的探討。藉以了解肉眼看不到的微孔的形狀與材料在受力後微孔擴張到目測能辨別時之形狀之關聯。此外,本篇所使用的橡膠材料包含neo-Hooken材料模型及Ogden材料模型。由數值分析之結果顯示,可藉由目測觀察到之孔洞幾何形狀,推測出未受力前之微孔幾何及其受力方式。
摘要(英) In macroscopic scale,we usually use the concept of the continuum mechanics to analysis the behavior of the material.However,in order to analyze the weakening of materials,damages in micro scale must be taken into account.
In this thesis,we will analysis the behavior of a micro void in a rubber block by using continuum mechanics and the finite element software(ABAQUS). For the deformations of a spherical micro-void,exact solutions and analytical approximate solution(the Hau-Abeyarantne field)had beed obtained.And we focus on the behavior of non-spherical micro-void in this thesis.we try to build up the relations between the visible shapes of an expanded micro-void and the invisible shape of the undeformed micro-void.Using these results we can infer about the shape of a undeformed micro-void from the observations of the expanded micro-void.The neo-Hookean model and the Ogden model are adopted in our study.
關鍵字(中) ★ 有限元素
★ 橡膠材料
★ HAF
關鍵字(英) ★ finite element
★ rubber
★ Hau-Abeyarantne field
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 V
表目錄 VII
圖目錄 VIII
符號表 XIII
第一章 緒論 1
第二章 基礎理論 3
2-1 控制方程式 3
2-2 材料模型 5
2-2-1 Ogden材料應變能密度函數[23-26] 5
2-2-2 neo-Hookean材料應變能密度函數 6
2-3 HAF 7
第三章 橡膠承受非等軸拉伸下圓形微孔之變形 9
3-1 有限元素模型,邊界條件及收斂分析 9
3-2 數值結果及HAF的誤差分析 17
第四章 橡膠承受等軸拉伸下非圓形微孔之變形 28
4-1有限元素模型,邊界條件及收斂分析 28
4-2數值結果 39
第五章 橡膠承受非等軸拉伸下非圓形微孔之變形 58
5-1有限元素模型及邊界條件 58
5-2數值結果 58
第六章 結論 63
參考文獻 66
參考文獻 [1] F. A. Mcclintock , A Criterion For Ductile Fracture By The Growth Of Holes. J. Appl. Mech. 35(1968), 363-371.
[2] A. Needleman, Void Growth In An Elastic-Plastic Medium. J. Appl. Mech. 39(1972) 964-970.
[3] A. L. Gurson, Continuum Theory Of Ductile Rupture By Void Nucleation And Growth: Part I—Yield Criteria And Flow Rules For Porous Ductile Media. J. Energ. Matl. Tech. , Trans.Asme,(1977) 2-15.
[4] U. Stigh, Effects Of Interacting Cavities On Damage Parameter. J. Appl. Mech. 53(1986), 485-490.
[5] A. N. Gent ,Cavitation In Rubber: A Cautionary Tale. Rubber Chem. Tech., 63(1990) 49-53.
[6] E. Bayraktar , Et. Al., Damage Mechanisms In Natural (Nr) And Synthetic Rubber (Sbr): Nucleation, Growth And Instability Of The Cavitation. Fatique Fract. Engrg. Mater. Struct. , 31(2008)184-196.
[7] C. Fong, Cavitation Criterion For Rubber Materials: A Review Of Void-Growth Models. J. Polymer Sci.: Part B: Polymer Phys., 39(2001)2081-2096.
[8] J.M.Ball, Discontinous Equilibrium Solutions And Cavitation In Nonlinear Elasticity. Phil.Trans.R.Soc.Lond, A306 (1982) 557-610.
[9] C.O. Horgan And D.A. Polignone , Cavition In Nonlinearly Elastic Solids: Areview. Appl. Mech. Rev . ,48(1995)471-485.
[10] J.Sivaloganathan And S.J.Spector, On Cavitation, Configurational Forces And Implications For Fracture In A Nonlinearly Elastic Material. J. Of Elasticity, 67(2002)25-49.
[11] C.A.Stuart, Radially Symmetric Cavitation For Hyperelastic Materials, Ann.Inst.Henri Poincare-Analyse Non Lineare, 2 (1985) 33-66.
[12] C.O.Horgan And R.Abeyaratne, A Bifurcation Problem For A Compressible Nonlinearly Elastic Medium: Growth Of A Micro-Void. J.Elasticity, 16 (1986) 189-200.
[13] F.Meynard, Existence And Nonexistence Results On The Radially Symmetric Cavitation Problem. Quart.Appl.Math. 50 (1992) 201-226.
[14] C.A.Stuart, Estimating The Critical Radius For Radially Symmetric Cavitation, Quart.Appl.Math., 51 (1993) 251-263.
[15] S.Biwa, Critical Stretch For Formation Of A Cylindrical Void In A Compressible Hyperelastic Material. Int.J.Non-Linear Mech., 30 (1995) 899-914.
[16] S.Biwa, E.Matsumoto And T.Shibata, Effect Of Constitutive Parameters On Formation Of A Spherical Void In A Compressible Non-Linear Elastic Material. J.Appl.Mech. 61 (1994) 395-401.
[17] H.C.Lei(李顯智) And H.W.Chang, Void Formation And Growth In A Class Of Compressible Solids. J.Engrg.Math., 30 (1996) 693-706.
[18] R. Cortes, The Growth Of Microvoids Under Intense Dynamic Loading. Int. J. Solids Struct. 29(1992)1339-1350.
[19] H.S. Hou And R. Abeyaratne, Cavitation In Elastic And Elastic-Plastic Solids.. J. Mech. Phys. Solids, 40 (1992) 571-592.
[20] M. Danielsson, D.M. Parks And M.C. Boyce, Constitutive Modeling Of Porous Hyperelastic Material. Mech. Mater., 36(2004)347-358.
[21] J. Li, D. Mayau And F. Song, A Constitutive Model For Cavitation And Cavity Growth In Rubber-Like Materials Under Arbitrary Tri-Axial Loading. Int. J. Solids Struct., 44(2007)6080-6100.
[22] J. Li, D. Mayau And V. Lagarrigue, A Constitutive Model Dealing With Damage Due To Cavity Growth And The Mullins Effect In Rubber-Like Materials Under Triaxial Loading. J. Mech. Phys. Solids, 56(2008)953-973.
[23] R.W. Ogden, On Constitutive Relations For Elastic And Plastic Materials. Ph.D. Dissertation, Cambridge University, 1970.
[24] R.W. Ogden, Large Deformation Isotropic Elasticity I: On The Correlation Of Theory And Experiment For Incompressible Rubberlike Solids. Proc. R. Soc.London, Series A, 326(1972)565-584.
[25] R.W. Ogden, ‘Elastic Deformations Of Rubberlike Solids’ In Mechanics Of Solids, The Rodney Hill 60th Anniversary Volume (Eds. H.G. Hopkins And M.J. Sewell). Pergamon Press, Pp. 499-537, 1982.
[26] R.W. Ogden, “Non-Linear Elastic Deformations”. Ellis Horwood Limited, Chichester, England ,1984.
[27] T.Beda,Modeling Hyperelastic Behavior Of Rubber: A Novel Invariant-Based And A Review Of Constitutive Models.J.polymer Sci.:Part B:Polymer phys.,45(2007)1713-1732.
指導教授 李顯智(Hin-Chi Lei) 審核日期 2014-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明