博碩士論文 101322014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.233.242.204
姓名 劉傳騰(Chuan-Teng Liu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 橋梁動態載重識別之模態函數法
(Dynamic Loadings Identification of Bridge by the Modal Function Method)
相關論文
★ 貼片補強構件之層間應力分析★ 軌道不整檢測及識別方法
★ 混凝土結構分析之三維等效單軸組成材料模型★ 卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證
★ 以四面體離散化多面體系統之接觸分析與模擬★ 軌道車輛三維動態脫軌係數之在線量測理論
★ 向量式DKMT厚殼元推導與模擬★ 向量式預力混凝土二維剛架元之數值模擬與驗證
★ 向量式有限元應用於懸索橋非線性動力分析★ 蛋形顆粒群之流固耦合分析
★ 複合版梁元素分析模型之橋梁動態識別法★ 三維等效單軸應變與應力之材料組成模型
★ 人行吊橋的現有內力評估及動力分析★ 薄殼結構非線性運動之向量式有限元分析法
★ 雷射掃描技術於鋼軌磨耗之檢測★ 動態加載下的等效單軸應變與 應力材料組成模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 車輛超載容易對公路或橋梁結構等交通設施產生破壞,尤其對於某些交通量大的重要公路或橋梁更顯得重要,基於運輸安全的重要性,因此衍生出許多車輛載重識別(Weigh-In-Motion)的方法,其中一種研究車輛與橋梁之間的力學互制關係,稱之為橋梁動態載重識別方法(Bridge Weigh-In-Motion),此方法主要利用橋梁的力學反應之應變值來識別出通過之車輛總重及軸重。
本研究主要是利用結構動力方程式做為基礎,並將所分析之橋梁有限元素化,推導出自由度與應變之間的關係,並利用模態的觀念,將自由度展開成模態振形(mode shape)乘上廣義座標,此方法減少反算程式在迭代求解的所耗費的大量計算時間,並可將所量測到的應變值做一個即時(Real-time)分析的應用。藉由引入線性離散時間系統(Linear Discrete-Time System)裡面的狀態空間系統(State-Space System)和在線性代數中求解近似值的一種方法為直接正規化法,如Tikhonov正規化,並利用動態規劃(Dynamic Programming)演算法迭代進行反算求解出橋梁上的移動載重。
橋梁結構數值模擬是利用有限元素法來分析,從二維梁元素模型,到三維梁元素模擬,驗證此動態反算理論利用模態函數法識別載重之準確度,並考量其他因素例如車速,應變計數量等對於載重識別結果之影響探討。
摘要(英) Overloaded vehicles are prone to produce damage on the road or the bridge structures,especially for the high traffic flow in the important roads or bridges, Based on the importance of transportation safety, many vehicles load identification method (Weigh-In-Motion) are reported recently.One study of the mechanical interaction between the vehicle and the bridge, called the bridge of dynamic load identification methods (Bridge Weigh-In-Motion), the main advantage of this method is using the mechanical strain response of bridges to identify the vehicle′s total weight by and axle load.
This study is based on the equations of dynamic structures and derive the relationship equations between the degree of freedoms and the strains by discretizing the bridge object.and the degree of freedom can be expanded into the modal shape multiplied by the generalized coordinate by using the modal method. This method can reduce a lot of computing time in the inverse program and can make it to be an immediate (Real-time) analysis of the application.
Numerical simulation of the bridge structure is analyzed using the finite element method, from the two-dimensional beam element model to simulate three-dimensional beam elements. To verify the accuracy of the inverse problem by the modal method and to consider influence of the load identification the factors like speed and the number of the strain.
關鍵字(中) ★ 模態法
★ 狀態空間系統
★ Tikhonov正規化
★ 動態規劃
關鍵字(英) ★ modal method
★ state space system
★ Tikhonov regularislation
★ Dynamic programming
論文目次 摘要 I
Dynamic Loadings Identification of Bridge by the Modal Function Method II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 - 1 -
1.1 研究動機與目的 - 1 -
1.2 論文架構 - 1 -
第二章 文獻回顧 - 3 -
第三章 理論方法 - 7 -
3.1 理論背景 - 7 -
3.1.1 梁元素與自由度的關係 - 7 -
3.1.2 狀態空間方程式 - 14 -
3.1.3 Tikhonov正規化法 - 16 -
3.1.4 正規化參數 - 18 -
3.2 動態反算問題之程序化 - 20 -
3.2.1 前言 - 20 -
3.2.2 Bellman動態規劃 - 20 -
3.3 模態法 - 29 -
第四章 數值模擬與分析 - 32 -
4.1 二維簡支梁模擬 - 32 -
4.1.1 梁構件模型 - 32 -
4.1.2 梁元素參數 - 34 -
4.1.3 移動力加載形式 - 36 -
4.1.4 動態載重之識別結果 - 36 -
4.2 三維Grid梁元素之簡支梁模擬 - 43 -
4.2.1 移動力量加載形式 - 44 -
4.2.2 不同應變計數量之識別結果 - 45 -
4.2.3 不同速度之識別結果比較 - 61 -
第五章 三鶯大橋動載實驗 - 70 -
5.1 試驗位置 - 70 -
5.2 實驗儀器 - 72 -
5.3 試驗載重車型式 - 73 -
5.4 載重車作用位置 - 73 -
5.5 大梁應變位置 - 74 -
5.6 識別結果 - 76 -
第六章 結論與建議 - 81 -
6.1 結論 - 81 -
6.2 建議 - 82 -
參考文獻 - 83 -
附錄 A - 86 -
附錄 B - 93 -
參考文獻 [1] ARCHES,Assessment and Rehabilitation of Central European Highway Structures,D08:Recommendations on the use of results of monitoring on bridge safety assessment and maintenance (2009)
[2] Bellman, R. & Dreyfus, S. E., (1962). Applied DynamicP programming. The RAND Corporation Published, 1962, Princeton University Press.
[3] Bellman, R., (1995). Introduce to Matrix Analysis. Society for Industrial and Applied Mathematics. Philadelphia 1995.
[4] Chopra,Dynamic of structures Theory and Applications to Earthquake Engineering, Fourth Edition(2012)
[5] Green,M & Cebon, D.,(1994). Dynamic Response of Highway Bridges to Heavy Vehicle Loads:Theory and Experimental Validation,Journal of Sound and Vibration
[6] Gonzalez A, Green MF O’Brien E, Xie, H.,(2002). Theoretical testing of a multiple-sensor bridge weigh in motion algorithm.
[7] González, Arturo; Rowley, C.; O′Brien, Eugene J. (2008). A General Solution to the Identification of Moving Vehicle Forces on a Bridge. Wiley, International Journal for Numerical Methods in Engineering, 75 (3): 335-354
[8] Hansen, P.C., (1998). Rank-Deficient and Discrete ill-posed Problems, Numerical Aspects of Linear Inversion.
[9] Kalin, J., Znidaric, A., and Lavric, I., (2006) .Practical Implementation of Nothing-On-The-Road Bridge Weigh-In-Motion System‘ 9th International Symposium on Heavy Vehicle Weights and Dimensions.
[10] Logan, D. L., (2000). A first Course in the Finite Element Method. 3rd edition, Wadsworth Group. Brooks/Cole.
[11] Moses, F., (1978). Weigh-in-motion system using instrumented bridges. ASCE Journal of Transportation Engineering, 105, 233-249.
[12] O’Brien, E., Žnidarič, A., & Dempsey, A. T., (1999c). Comparison of two independently developed bridge weigh-in-motion systems. Heavy Vehicle Systems, Int. J. of Vehicle Design., 6(1-4), 147-162.
[13] Ojio, T., Yamada, K. & Shinkai, H., (2000). BWIM Systems using Truss Bridges, Bridge Management Four, Edited by M.J. Ryall, G.A.R. Parker and J.E. Harding, Thomas Telford, University of Surrey, UK, pp. 378-386.
[14] Peters, R. J., (1984). AXWAY – A System to Obtain Vehicle Axle Weights. Proceedings of the12th ARRB Conference, 12(1): 17-29.
[15] Peters, R. J., (1986). An unmanned and undetectable highway speed vehicle weighing system. Proceedings 13th ARRB Conference. 13(6): 70-83.
[16] Przemineiecki, J. S., (1968). Theory of Matrix Structural Analysis. 1st Edition McGraw Hill Book Co. New York, McGraw Hill Inc.
[17] Pinkaew, T., “Identification of Vehicle Axle Loads from Bridge Responses Using
Updated Static Component Technique,” Engineering Structures, Vol. 28,
pp.1599-1608 (2006).
[18] Trujillo, D. M., (1977). The direct numerical integration for linear matrix differential equations using Pade approximations. International Journal for Numerical Methods in Engineering.
[19] Trujillo, D. M., & Busby, H. R., (1992). Practical Inverse Analysis in Engineering. New York: CRC Press.
[20] Tikhonov, A. N., & Aresenin, V. Y., (1977). Solution of ill-posed Problems. New York: John Wiley & Sons.
[21] Žnidarič, A. & Baumgärtner, W., (1998). ‘Bridge Weigh-In-Motion Systems – An Overview’, in Pre-proceedings of the 2nd European Conference on Weigh-In-Motion, Eds. E.J. O’Brien &B. Jacob, Lisbon, Portugal, pp. 139-152, 1998.
[22] Znidaric,Lavric,&Kalin(2005),”Nothing-on-the-road axle detection with threshold analysis”
[23] 陳士文, 橋梁動態載重識別之直接正規化法,國立中央大學土木工程學系(2013)
指導教授 王仲宇 審核日期 2014-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明