博碩士論文 101322016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.145.111.183
姓名 蘇彥方(Yen-fang Su)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 綠色高韌性纖維混凝土(Green-ECC)本土化發展與自癒合能力之研究
相關論文
★ 耦合結構牆地震行為與性能化設計法★ 形狀記憶合金於抗震RC耦合牆系統之初步研究
★ 鋼絲網加勁高韌性纖維水泥基複合材料之力學行為研究★ 高韌性纖維混凝土(ECC)之材料配比及添加物對收縮及力學性質影響
★ 材料組成比例對超高性能纖維混凝土之工作性與力學性質之影響★ 耦合結構牆受近斷層地震作用之行為
★ 高爐石高韌性纖維混凝土(ECC)之開發與自癒合研究★ 鋼筋混凝土柱受撓曲變形參數之研究
★ 有鋼筋截斷之RC梁耐震行為探討★ 預鑄施工梁與版間冷縫對T形斷面梁耐震行為之影響
★ 高韌性纖維混凝土耦合結構牆之數值模型★ 預力混凝土橋梁受洪水沖刷後之側推與逐漸倒塌之研究
★ 基礎裸露鋼筋混凝土橋梁之抗震行為與能力評估★ 高強度鋼筋加勁超高性能纖維混凝土低矮型剪力牆之反覆載重行為
★ 高強度鋼筋混凝土連接梁反覆載重行為之研究★ 受腐蝕鋼筋混凝土構架之抗耐震性能評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以發展高韌性混凝土(Engineered Cementitious Composites,之後簡稱ECC)之本土化材料設計為出發點,討論水膠比之變化與製造流程的創新,探究其對ECC重要力學性質之影響,包含:拉力、壓力、撓曲性質、以及流變性質。成功利用本土化材料如水泥、飛灰、矽砂、以及強塑劑等,研發出兼具高流動性、高韌性、以及高強度之ECC材料,其抗壓應力超過50 MPa、抗拉應變量可達1-3%、且坍流度可達65公分。進一步,研發出五種高礦物摻料(Mineral Admixtures)的Green ECC配比,並探討其力學及流變性質之變化。結果顯示,提高飛灰量能增加Green ECC的韌性,但是會降低力學強度及工作性;相較於僅使用高量飛灰的配比,複合爐石粉於配比中,能改善流變性質,增進工作效能,提高早期強度,並保有優良的拉力應變及撓曲變形韌性。
最後,探討ECC自癒合能力,以共振頻率(Resonant Frequency Test)、拉力試驗(Uniaxial Tensile Test)、以及SEM(Scanning Electron Microscope)來評估並觀察Green-ECC受到兩種不同程度破壞(Pre-Crack 0.5% and 1%)後,放置於三種不同環境下(包括水中、自然環境、以及乾燥環境)的自癒合程度。研究發現,所有配比在水中以及自然環境中皆有自癒合的行為發生。其中,共振頻率恢復程度方面,以高飛灰量的配比表現較好。而複合爐石粉的配比,其拉應力及勁度恢復程度較佳。
摘要(英) The objectives of this research are to develop Engineered Cementitious Composites (ECC) using locally available materials, and to evaluate the self-healing behavior of ECC. The study starts by designing the mixture proportions using locally available materials in Taiwan. The effects of water binder ratio and mixing method on the mechanical and rheological properties (including tensile properties, compressive properties, and flexural properties) of the developed ECC are studied. The study successfully used the locally available materials such as cement, fly ash, silica sand, and superplasticizer etc., to develop the ECC with high flowability, ductility and strength. In particular, the compressive stress is over 50 MPa, tensile strain is up to 1-3%, and the slump flow can reach to 65 cm. Furthermore, five different mixture designs of Green-ECC with high volumes of mineral admixtures are developed. Experiments are carried out to evaluate their mechanical and rheological properties. The experimental results show that while Green-ECC with high volume of fly ash can enhance the tensile strain capacity, the compressive stress and workability are decreased. Compared to using only high volume of fly ash, the mixtures containing fly ash and slag can enhance the workability, early strength while maintaining excellent tensile strain capacity and flexural deflection capacity.
Investigations are carried out on self-healing capacities of ECC specimens with two different degrees of pre-crack (0.5% and 1%) and three different storage environments (including water, natural environment, as well as dry conditions). To quantify self-healing behavior of Green-ECC, the resonant frequency test and uniaxial tensile test (UTT) are conducted. In addition, Scanning Electron Microscope (SEM) with Energy Dispersive Spectroscopy (EDS) are used to observe and analyze the self-healing products. The test results reveal that all specimens of Green-ECC show self-healing behavior under water and natural environment. The specimens of high volume of fly ash exhibit the best self-healing performance in terms of the recovery ratio of the resonance frequency. The mixtures incorporating fly ash and slag show the best recovery with respects to tensile stress and stiffness.
關鍵字(中) ★ 韌性
★ 混凝土
★ 纖維
★ 自癒合
★ 應變硬化
關鍵字(英) ★ ECC
★ Fiber
★ strain hardening
★ self healing
論文目次 摘要 v
Abstract vii
誌謝 viii
目錄 x
圖目錄 xiii
表目錄 xviii
第一章 緒論 1
1-1研究動機 1
1-2研究目的 2
1-3研究方法 3
1-4論文架構 3
第二章 文獻回顧 5
2-1 ECC簡介 5
2-2 礦物摻料的應用 7
2-2.1礦物摻料 7
2-2.2礦物摻料於ECC的應用 11
2-3 混凝土自癒合現象 12
2-3.1自癒合簡介 12
2-3.2 ECC之自癒合研究 18
第三章 實驗計畫 23
3-1材料 23
3-2配比設計 26
3-2.1 ECC配比本土化流程 26
3-2.2本土化ECC配比設計 29
3-2.3綠色ECC配比設計 30
3-3拌合方式 32
3-4實驗試體與設置 34
3-4.1力學試驗 34
3-4.2流變性質試驗 36
3-4.3自癒合實驗 39
3-4.3.1自癒合實驗流程 39
3-4.3.2預拉與拉力試驗 40
3-4.3.3共振頻率試驗 41
3-4.3.4材料分析儀器 43
3-4.3.5環境設置 44
第四章 結果與討論 46
4-1纖維添加方式對ECC力學性質之影響 46
4-2水膠比對ECC力學性質之影響 51
4-3五種高礦物摻料ECC試驗之結果與討論 55
4-3.1不同配比的力學性質比較 61
4-3.1.1壓力實驗 61
4-3.1.2拉力實驗 62
4-3.1.3四點彎矩實驗 64
4-3.1.4綜合比較 66
4-3.2不同配比於各齡期之力學性質變化 68
4-3.2.1壓力實驗 68
4-3.2.2拉力實驗 71
4-3.2.3四點彎矩實驗 75
4-3.3流變性質結果與討論 78
4-4自癒合試驗結果與討論 82
4-4.1不同配比之自癒合結果 82
4-4.2不同養護環境之自癒合結果 87
4-4.3不同齡期之自癒合結果 91
4-4.4 SEM表面分析 92
第五章 結論 99
References 103
附錄 109
參考文獻 [1] Li VC, Wang S, Wu C. Tensile Strain-hardening Behavior of PVA-ECC. ACI MATERIALS JOURNAL. 2001;November-December:483-92.
[2] Maleki S, Bagheri S. Behavior of channel shear connectors, Part I: Experimental study. Journal of Constructional Steel Research. 2008;64(12):1333-40.
[3] Maalej M, Quek ST, Ahmed SFU, Zhang J, Lin VWJ, Leong KS. Review of potential structural applications of hybrid fiber Engineered Cementitious Composites. Construction and Building Materials. 2012;36:216-27.
[4] Yuan F, Pan J, Xu Z, Leung CKY. A comparison of engineered cementitious composites versus normal concrete in beam-column joints under reversed cyclic loading. Materials and Structures. 2012;46(1-2):145-59.
[5] WBCSD. The Cement Sustainability Initiative: Progress report. 2002.
[6] Hearn N, Morley CT. Self-healing property of concrete – Experimental evidence. Materials and Structures. 1997;30:404-11.
[7] Li VC, Herbert E. Robust Self-Healing Concrete for Sustainable Infrastructure. Journal of Advanced Concrete Technology. 2012;10(6):207-18.
[8] Li VC. Engineered Cementitious Composites (ECC) Material, Structural, and Durability Performance. In: G.Nawy E, editor. Concrete Construction Engineering Handbook. 2 ed2007. p. 24.1-.4.
[9] USGS. Cement. Mineral Commodity Summaries2014.
[10] 林平全, 許伯良, 李銘智, 張永昌, 陳育聖. The Study of Using Complex Mineral. Concrete Technology. 2012;6(3):45-50.
[11] Yang E-H. Designing Added Functions in Engineered Cementitious Composites. The University of Michigan, The University of Michigan; 2008.
[12] ASTM. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM; 2012. p. 1-5.
[13] 公共工程飛灰混凝土使用手冊. In: 中華民國行政院公共工程委員會, editor.
[14] Özbay E, Karahan O, Lachemi M, Hossain KMA, Atis CD. Dual effectiveness of freezing–thawing and sulfate attack on high-volume slag-incorporated ECC. Composites Part B: Engineering. 2013;45(1):1384-90.
[15] Chen Z, Yang Y, Yao Y. Quasi-static and dynamic compressive mechanical properties of engineered cementitious composite incorporating ground granulated blast furnace slag. Materials & Design. 2013;44:500-8.
[16] S¸ahmaran M, Yücel HE, Demirhan S, Arık MT, Li VC. Combined Effect of Aggregate and Mineral Admixures on Tensile Ductility of Engineered Cementitious Composites. ACI MATERIALS JOURNAL. 2012;109(6):627-38.
[17] Lee BY, Cho C-G, Lim H-J, Song J-K, Yang K-H, Li VC. Strain hardening fiber reinforced alkali-activated mortar – A feasibility study. Construction and Building Materials. 2012;37:15-20.
[18] Zhou J, Qian S, Sierra Beltran MG, Ye G, Breugel K, Li VC. Development of engineered cementitious composites with limestone powder and blast furnace slag. Materials and Structures. 2009;43(6):803-14.
[19] Kim J-S, Kim Y-Y, Kim J-K. Diverse Application of ECC Designed with Ground Granulated. International Journal of Concrete Structures and Materials. 2007;1(1):11-8.
[20] Kim J-K, Kim J-S, Ha GJ, Kim YY. Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag. Cement and Concrete Research. 2007;37(7):1096-105.
[21] Özbay Ea, S¸ahmaran M, Lachemi M, Yücel HE. Effect of Microcracking on Frost Durability of High-Volume Fly-Ash- and Slag-Incorporated Engineered Cementitious Composites. ACI MATERIALS JOURNAL. 2013;110(3):259-68.
[22] Zhu Y, Yang Y, Yao Y. Use of slag to improve mechanical properties of engineered cementitious composites (ECCs) with high volumes of fly ash. Construction and Building Materials. 2012;36:1076-81.
[23] Committee JIS. Ground granulated blast-furnace slag for concrete. 2013.
[24] ASTM. Standard Specification for Slag Cement for Use in Concrete and Mortars. 2014.
[25] Li G, Zhao X. Properties of concrete incorporating fly ash and ground granulated blast-furnace slag. Cement & Concrete Composites. 2003;25:293–9.
[26] Berndt ML. Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Construction and Building Materials. 2009;23(7):2606-13.
[27] 陳筱蓉. 傷口癒合機轉傷口種類與處裡.
[28] Hearn N. Self-healing, autogenous healing and continued hydration: What is the difference? Materials and Structures. 1997;31:563-7.
[29] X. H. Self healing of Engineered Cementitious Composites (ECC) in concrete repair
system, Delft University of Technology; 2010.
[30] C. E. Water permeability and autogenous healing of cracks in
concrete. ACI MATERIALS JOURNAL. 1999;96:448-54.
[31] S VdZ. Self-healing materials: an alternative approach to 20 centuries of material science2007.
[32] Yang Y, Yang E-H, Li VC. Autogenous healing of engineered cementitious composites at early age. Cement and Concrete Research. 2011;41(2):176-83.
[33] Yang Y, Lepech MD, Yang E-H, Li VC. Autogenous healing of engineered cementitious composites under wet–dry cycles. Cement and Concrete Research. 2009;39(5):382-90.
[34] Wu M, Johannesson B, Geiker M. A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Construction and Building Materials. 2012;28(1):571-83.
[35] S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, et al. Autonomic healing of polymer composites. Nature. 2001;409:794-7.
[36] C. D. Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Material Structure. 1994;3(5):118-23.
[37] Dry C, W. M. Three-part methylmethacrylate adhesive system as an internal delivery system for smart responsive concrete. Smart Material Structure. 1996;5(3):297-300.
[38] Joseph C, Jefferson AD, Isaacs B, Lark Ra, Gardner D. Experimental investigation of adhesive-based self-healing of cementitious materials. Magazine of Concrete Research. 2010;62(11):831-43.
[39] Li VC, Lim YM, Chan Y. Feasibility study of a passive smart self-healing cementitious composite. Composites Part B: Engineering. 1998;29b:819-27.
[40] Van Tittelboom K, De Belie N, Van Loo D, Jacobs P. Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent. Cement and Concrete Composites. 2011;33(4):497-505.
[41] Gollapudi UK, Knutson CL, Bang SS, MR. I. A new method for controlling
leaching through permeable channels. Chemosphere. 1995;30:695-705.
[42] Tittelboom KV, Beliea ND, Muynck WD, Verstraete W. Use of bacteria to repair cracks in concrete. Cement and Concrete Research. 2010;40(1):157-66.
[43] Jonkers HM. Bacteria-based self-healing concrete. Heron. 2011;56(1/2):1-12.
[44] Kishi T, Ahn T, Hosoda A, Suzuki S, Takaoka H. Self-healing behaviour by cementitious recrystallization of cracked concrete incorporating expansive agent. 1st International Conference on Self-Healing Materials. Noordwijk aan Zee,The Netherlands2007.
[45] Song G, YL. M. Increasing concrete structural survivability using smart materials. University of Houston: A proposal submitted to Grants to Enhance and Advance
Research (GEAR); 2003.
[46] Mo YL, Song G, K. O. Development and testing of a proof-of-concept smart concrete structure. Proceeding of smart structures technologies and earthquake engineering2004.
[47] Yang E-H. Designing Added Functions in Engineered Cementitious Composites, The University of Michigan; 2008.
[48] Li VC. Tailoring ECC for Special Attributes: A Review. International Journal of Concrete Structures and Materials. 2012;6(3):135-44.
[49] Qian S, Zhou J, de Rooij MR, Schlangen E, Ye G, van Breugel K. Self-healing behavior of strain hardening cementitious composites incorporating local waste materials. Cement and Concrete Composites. 2009;31(9):613-21.
[50] Qian SZ, Zhou J, Schlangen E. Influence of curing condition and precracking time on the self-healing behavior of Engineered Cementitious Composites. Cement and Concrete Composites. 2010;32(9):686-93.
[51] Li-Li Kan, Hui-Sheng Shi, Aaron R. Sakulich, Li VC. Self-Healing Characterization of Engineered Cementitious Composite Materials. ACI MATERIALS JOURNAL. 2010;106(6):617-24.
[52] Kan L-l, Shi H-s. Investigation of self-healing behavior of Engineered Cementitious Composites (ECC) materials. Construction and Building Materials. 2012;29:348-56.
[53] Erdoğan Özbay, Mustafa Şahmaran, Hasan E. Yücel, Tahir K. Erdem, Mohamed Lachemi, Li VC. Effect of Sustained Flexural Loading on Self-Healing of Engineered Cementitious Composites. Journal of Advanced Concrete Technology. 2013;11(5):167-79.
[54] Erdoğan Özbay, Mustafa Sahmaran, Mohamed Lachemi, Yücel HE. Self-Healing of Microcracks in High-Volume Fly-AshIncorporated Engineered Cementitious Composites. ACI MATERIALS JOURNAL. 2013;110(1):33-43.
[55] Zhang Z, Qian S, Ma H. Investigating mechanical properties and self-healing behavior of micro-cracked ECC with different volume of fly ash. Construction and Building Materials. 2014;52:17-23.
[56] Sahmaran M, Yildirim G, Erdem TK. Self-healing capability of cementitious composites incorporating different supplementary cementitious materials. Cement and Concrete Composites. 2013;35(1):89-101.
[57] Sisomphon K, Copuroglu O, Koenders EAB. Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cement and Concrete Composites. 2012;34(4):566-74.
[58] Sisomphon K, Copuroglu O, Koenders EAB. Effect of exposure conditions on self healing behavior of strain hardening cementitious composites incorporating various cementitious materials. Construction and Building Materials. 2013;42:217-24.
[59] Herbert E, Li V. Self-Healing of Microcracks in Engineered Cementitious Composites (ECC) Under a Natural Environment. Materials. 2013;6(7):2831-45.
[60] 湛淵源. 混凝土內使用飛灰、爐石及矽灰材料的場合. 臺灣省土木技師公會; 2005.
[61] ACI. 318 Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute; 95.
[62] Yang E-H, Sahmaran M, Yang Y, Li VC. Rheological Control in Production of Engineered Cementitious Composites. ACI MATERIALS JOURNAL. 2009;106:357-66.
[63] Li M, Li VC. Rheology, fiber dispersion, and robust properties of Engineered Cementitious Composites. Materials and Structures. 2012;46(3):405-20.
[64] Şahmaran M, Bilici Z, Ozbay E, Erdem TK, Yucel HE, Lachemi M. Improving the workability and rheological properties of Engineered Cementitious Composites using factorial experimental design. Composites Part B: Engineering. 2013;45(1):356-68.
[65] Zhou J, Qian S, Ye G, Copuroglu O, van Breugel K, Li VC. Improved fiber distribution and mechanical properties of engineered cementitious composites by adjusting the mixing sequence. Cement and Concrete Composites. 2012;34(3):342-8.
[66] CNS. 1232 混凝土圓柱試體抗壓強度檢驗法.
[67] ASTM. Standard Test Method for Slump Flow of Self-Consolidating Concrete. ASTM 2009.
[68] contributors W. Viscoplasticity. Wikipedia , The Free Encyclopedia.
[69] Kim J-S, Kim J-K, Ha GJ, Kim YY. Rheological control of cement paste for applying prepackaged ECCs (Engineered Cementitious Composites) to self-consolidating and shotcreting processes. KSCE Journal of Civil Engineering. 2010;14(5):743-51.
[70] Roussel N, Le Roy R. The Marsh cone: a test or a rheological apparatus? Cement and Concrete Research. 2005;35(5):823-30.
[71] Kong H-J, Bike SG, Li VC. Constitutive rheological control to develop a self-consolidating engineered cementitious composite reinforced with hydrophilic poly(vinyl-alcohol) fibers. Cement & Concrete Composites. 2003;25:333-41.
[72] ASTM. Standard Test Method for Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method). ASTM; 2010.
[73] ASTM. Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens. ASTM2008.
[74] Torigoe S-i, Horikoshi T, Ogawa A, Saito T, Hamada T. Study on Evaluation Method for PVA Fiber Distribution in Engineered Cementitious Composite. Journal of Advanced Concrete Technology. 2003;1:265-8.
[75] Haque MN, COOK DJ. The Effect of Water Sorption on the Dynamic Modulus of Elasticity of Desiccated Concrete Materials. Journal of Materials and Structure. 1976;9(6):407-10.
指導教授 洪崇展(Chung-chan Hung) 審核日期 2014-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明