博碩士論文 101322027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.237.94.109
姓名 陳怡文(Yi-Wen Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 考量斷層錯動與塑鉸破壞之橋梁極限分析
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 塑鉸極限破壞數值模型開發★ 橋梁直接基礎搖擺之極限分析
★ Impact response and shear fragmentation of RC buildings during progressive collapse★ 應用多項式滾動支承之隔震橋梁研究
★ Numerical Simulation of Bridges with Inclined★ 橋梁三維極限破壞分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近二十餘年世界所發生災害性地震中,已獲得相當多近斷層強地動紀錄,近斷層地表運動相較於遠域地表運動,其特色在於震波中含有長週期速度脈衝。1999年台灣921大地震中引發地震之車籠埔斷層沿線,十餘座橋梁發生嚴重損壞,除強烈地表運動外,斷層沿線最大達8公尺錯動位移乃橋梁損壞甚至崩塌之主要原因。
本研究採用新近發展適用於處理大變形、大變位、材料非線性與剛體運動等問題之向量式有限元素法(Vector Form Intrinsic Finite Element)為結構動力分析方法,以兩座三跨連續梁橋為目標橋梁,進行三維動力分析,輸入含地表錯動位移之近斷層地震波,經由參數分析結果,比較橋梁於水平橫向、縱向與垂直向組合地表錯動作用下之橋面板落橋、橋墩塑鉸與剪力破壞數目,瞭解連續梁橋於斷層錯動時破壞模式,並進行支承參數分析,深入探討支承破壞強度對於整體橋梁耐震能力與崩塌型式之影響。
此外,過去VFIFE使用雙線性彈簧元素(Bilinear Spring)模擬所有非線性行為,即構件受力達一定強度,全斷面降伏並同時進入塑性行為,但此行為無法精準模擬真實斷面由外至內依序降伏之實際情況。故本研究引入纖維元素法(Fiber Element Method),以纖維元素之應力應變數值計算準確模擬塑鉸達極限破壞之高度非線性行為,配合Newmark-β法增量迭代計算程序,並經由算例分析,證實所發展之新元素與新分析方法之正確性。
最後以一座五跨隔震支承連續橋梁為目標橋梁,進行參數分析探討於三種不同測站之強震下,橋墩柱底塑鉸分別使用纖維元素與雙線性彈簧元素時,橋梁防止落橋裝置與支承、橋墩間之相互影響關係,探討橋梁於地震發生時在極限狀態下之破壞模式。
摘要(英) In the past two decades, a number of near-fault ground motions have been recorded in major earthquakes, such as the 1999 Chi-Chi earthquake. Near-fault ground motions comprise long-period pulses, which is unique as compared to far-fault ground motions. Numbers of bridges along the Chelungpu fault suffered damage, even collapsed, during the Chi-Chi earthquake. Those can be attributed to not only the strong ground motions but also ground dislocation.
The Vector Form Intrinsic Finite Element (VFIFE) is superior in managing the engineering problems with material nonlinearity, discontinuity, large deformation, large displacement and arbitrary rigid body motions of deformable bodies. The VFIFE is thus selected to be the 3-D analysis method in this study. A three-span-continuous bridge is analyzed to predict the failure situation under 3-D near-fault ground motions with dislocation. Through a serious of parametric studies, the failure modes are demonstrated for bridges. Besides, the failure mechanism of bearing system is clarified so as to compare the feasibility of different bearing system.
And in order to analyze the real condition of the section, this study is aimed to develop the new model of Fiber Element that using stress-strain relation in plastic hinge zone to simulate high-degree nonlinear behavior of bridges by strong motion. Implicit time integration method (Newmark-β) is adopted to renew the iteration type of Fiber Element Method to calculate the element internal force. Finally, this study analyzes a five-span-continuous isolated bridge to investigate the extreme functions of the columns and unseating prevention devices between Fiber Element and Bilinear Spring, and predict the collapse situation of the target bridge.
關鍵字(中) ★ 向量式有限元素法
★ 近斷層地震
★ 纖維元素法
★ 極限狀態
★ 橋梁
關鍵字(英)
論文目次 摘 要…………………………………………………………………….I
Abstract………….……………………………………………………….II
致 謝………………………………………………………………….III
目 錄..…………………………………………………..….…………..IV
表 目 錄………………………………………………..…………..…IX
圖 目 錄………………………………………………..…….………XI
第一章 緒論………………………………………...…..……………….1
1.1 研究動機與目的………………………………..………………1
1.1.1 跨越斷層橋梁……………………………………………..1
1.1.2 塑鉸極限破壞..……………………………………………2
1.2 文獻回顧……………………………………..………………….3
1.2.1 向量式有限元素法………………………………………3
1.2.2 含地表錯動之地表位移歷時……………………………7
1.2.3 纖維元素法………………………………………………9
1.3 論文架構………………………………………..……………...10
第二章 空間向量式有限元素法…….………..…………..……………13
2.1 結構離散模式…………………………………………………14
2.2 質點運動方程式……………………………………..………..14
2.3 運動軌跡離散化………………………………………………18
2.4梁元素變形與內力計算…………………..…………………19
2.4.1 空間梁元素之移動基礎架構.………………..…….….….21
2.4.2節點位移與梁元素變形..…..……………………..…….….27
2.4.3 內力計算…………….……….………………..……….….31
2.5 隱式Newmark-β直接積分計算程序………………………….37
第三章 含地表錯動之地表位移歷時之建立……….....………..…51
3.1 近斷層地震波特性……………………….….………………51
3.2 建立近斷層地表運動脈衝之簡易模型……………………….54
3.3 近斷層地表運動之參數分析…………………………..……..56
第四章 特殊元素與橋梁極限狀態模擬….…………………..……..77
4.1 特殊元素………………………………………………………77
4.1.1 線性彈簧元素元素……………………………………..…79
4.1.2 雙線性彈簧元素………………………………………..…81
4.1.3 具可開塑性孔彈簧元素………………………………..…82
4.2 地表位移輸入法……………………………...……………….83
4.3 橋梁極限狀態模擬……………………………………………85
4.3.1 支承破壞模擬………………………………………..……86
4.3.2 平面滑動摩擦分析……………………………..…………87
4.3.3 構件斷裂模擬……..…………………………..…………92
第五章 跨越斷層橋梁實例分析與參數研究………………………….99
5.1 目標橋梁與分析模型…………………………………………99
5.2 數值分析模型…………………….………………………..…..99
5.2.1 上部結構模擬……………….…………..……………...100
5.2.2 下部結構模擬……………….…………..……………...101
5.2.3 支承系統模擬……………….…………..……………...104
5.2.4 防止落橋裝置模擬……………….…………..…...……104
5.3 參數研究與動力歷時分析結果……………………………106
5.3.1 垂直於橋軸之水平橫移斷層………………………….106
5.3.2 與橋軸相交於 之水平橫移斷層………………......108
5.3.3 垂直於橋軸之逆斷層……………………………………109
5.3.4 與橋軸相交於 之逆斷層…………………………….110
5.4 橋梁剛性支承之強度探討…………………………………112
5.4.1 垂直於橋軸之水平橫移斷層之支承強度探討…………112
5.4.2 與橋軸相交於 之水平橫移斷層之支承強度探討….113
5.4.3 垂直於橋軸之逆斷層之支承探討………………………114
5.4.4 與橋軸相交於 之逆斷層之支承強度探討………….115
第六章 纖維元素法…………………………………….……………..150
6.1 前言……………………………………………………...…150
6.2 廣義力量與變形定義………………………………………..150
6.3 梁元素公式…………………………………………………151
6.4 狀態判定……………………………………………………152
6.5 纖維元素參數與模型………………………………………...161
6.6 纖維元素基本公式…………………………………………...162
6.7 纖維梁元素非線性計算流程………………………………165
6.8 纖維元素法於向量式有限元素中之計算程序……………...171
第七章 數值算例驗證………………………………………………...183
7.1 含纖維元素法之向量式有限元素分析……………………..183
7.1.1 雷利阻尼分析(Rayleigh Damping Analysis)…………...183
7.2 纖維元素模型斷面數與纖維數分析………………………..185
7.2.1 外力側推分析…………………………………………...186
7.2.2 地表加速度分析………………………………………...188
7.3 降伏前後纖維元素模型與雙線性彈簧元素模型分析……..189
7.4 小結…………………………………………………………..191
第八章 含纖維元素法之橋梁實例分析與參數研究………………...200
8.1 目標橋梁與分析模型………………………………………..200
8.2 數值分析模型………………………………………………..200
8.3 參數研究……………………………………………………..205
8.3.1 動力歷時分析結果……………………………………...206
8.4 小結…………………………………………………………..212
第九章 結論與未來展望…………………………………………..…233
9.1 結論………………………………………………………..…233
9.1.1 跨越斷層橋梁………………………………………..….233
9.1.2 塑鉸極限破壞…………………………………………...234
9.2 未來展望………………………………………….………….235
參考文獻…………………………………………………….……….237
附圖………..………………………………………………….……….241
參考文獻 [1] Ting, E. C., Shih, C. and Wang, Y. K., “Fundamentals of a Vector Form Intrinsic Finite Element: Part I. Basic Procedure and a Plane Frame Element,” Journal of Mechanics, Vol.20, No.2, pp. 113-122, 2004.
[2] Ting, E. C., Shih, C. and Wang, Y. K., “Fundamentals of a Vector Form Intrinsic Finite Element: Part II. Plane Solid Elements,” Journal of Mechanics, Vol.20, No.2, pp. 123-132, 2004.
[3] Shih C., Wang, Y. K. and Ting, E. C., “Fundamentals of a Vector Form Intrinsic Finite Element: Part III. Convected Material Frames and Examples,” Journal of Mechanics, Vol.20, No.2, pp. 133-143, 2004.
[4] Wang, C. Y., Wang, R. Z., Kang, L. C. and Ting, E. C., “Elastic-Plastic Large Deformation Analysis of 2D Frame Structure,” Proceedings of the 21st International Congress of Theoretical and Applied Mechanics (IUTAM), SM1S-10270, Warsaw, Poland, August 15-21, 2004.
[5] Wu, T. Y., Wang, R. Z. and Wang, C. Y., “Large Deflection Analysis of Flexible Planar Frames,” Journal of the Chinese Institute of Engineers, Vol. 29, No. 4, pp. 593-606, 2006.
[6] 王仁佐,「向量式結構運動分析」,國立中央大學土木工程學研究所,博士論文,民國94年。
[7] 莊清鏘、陳詩宏和王仲宇,「向量式有限元於結構被動控制之應用」,固體與結構之工程計算-2006近代工程計算論壇,第O1-O25頁,2006。
[8] Wang, C. Y., and Wang, R. Z., “Nonlinear Dynamic Analysis of Space Frame Structures, “ Proceedings of the 6th International Conference on Computation of Shell and Spatial Structures, Cornell University, Ithaca, NY, USA, 2008.
[9] Wang, C. Y., Wang, R. Z., and Tsai, K. C., “Numerical Simulation of the Progressive Failure and Collapse of Structure under Sesimic and Impact Loading,” 4th International Conference on Earthquake Engineering, Taipei, Taiwan, No. 84, 2004.
[10] 陳柏宏,「運用向量式有限元素法於隔震橋梁之非線性動力分析」,國立中央大學土木工程學研究所,碩士論文,民國97年。
[11] 陳開天,「橋梁碰撞效應研究」,國立中央大學土木工程學研究所,碩士論文,民國99年。
[12] 汪栢靈,「橋梁極限破壞分析與耐震性能研究」,國立中央大學土木工程學研究所,碩士論文,民國99年。
[13] 蘇俊全,「強震中橋梁極限破壞三維分析」,國立中央大學土木工程學研究所,碩士論文,民國100年。
[14] Somerville, P., “Engineering Characteristics of Near Fault Ground Motion.” Proceeding of SMIP97 Seminar on Utilization of Strong-Motion Data, Los Angeles, California, May, 1997.
[15] Somerville, P., “Development of an improved ground motion representation for near fault ground motions.” Proceedings of SMIP98 Seminar on Utilization of Strong-Motion Data, Oakland, CA, September, 1998.
[16] Mavroeidis, G. P. and Papageorgiou, A. S., “A mathematical expression of near-fault ground motions.” Bulletin of the Seismological Society of America, Vol. 93, No. 3, pp. 1099-1131, 2003.
[17] Boore, D., “Effect of baseline correction on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake.” Bulletin of the Seismological Society of America, Vol. 91, No. 5, pp. 1199-1211, 2001.
[18] Alavi, B. and Krawinkler, H., “Behaviour of moment resisting frame structures subjected to near-fault ground motions.” Earthquake Engineering and Structure Dynamic, Vol. 33, pp. 687-706, 2004.
[19] Kalkan, E. and S Kunnath, S. K., “Effects of Fling Step and Forward Directivity on Seismic Response of Buildings.” Earthquake Spectra, Vol. 22, No. 2, pp. 367-390, May, 2006.
[20] Taucer, F. F., Spacone, E., and Filippou, F. C., “A Fiber Beam-Column Element for Seismic Response Analysis of Reinforced Concrete Structures,” No. UCB/EERC-91/17, Earthquake Engineering Research Center, University of California, Berkeley, 1991.
[21] 日本道路協會,「道路橋示方書同解說─耐震設計篇」,丸善株式會社,東京,2002。
[22] Watanabe, G., Kawashima, K., “Numerical Simulation of Pounding of Bridge Decks,” 13th World Conference on Earthquake Engineering, 2004.
[23] Hoshikuma, J., Kawashima, K., Nagaya, K. and Taylor, A. W. “Stress-strain Model for Confined Concrete in Bridge Piers,” ASCE, Journal of Structural Engineering, Vol. 123, No. 5, 1997.
指導教授 李姿瑩(Tzu-Ying Lee) 審核日期 2013-10-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明