博碩士論文 101322028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:35.168.110.128
姓名 廖健閔(Chien-Min Liao)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 TMD 應用於橋梁受車輛與地震載重之減振研究
相關論文
★ PSO-DE混合式搜尋法應用於結構最佳化設計的研究★ 考量垂直向效應之多項式摩擦單擺支承之分析與設計
★ 以整合力法為分析工具之結構離散輕量化設計效率的探討★ 最佳化設計於結構被動控制之應用
★ 多項式摩擦單擺支承之二維動力分析與最佳參數研究★ 構件考慮剛域之向量式有限元素分析研究
★ 矩形鋼管混凝土考慮局部挫屈與二次彎矩效應之軸壓-彎矩互制曲線研究★ 橋梁多支承輸入近斷層強地動極限破壞分析
★ 穩健設計於結構被動控制之應用★ 二維結構與固體動力分析程式之視窗介面的開發
★ 以離心機實驗與隱式動力有限元素法模擬逆斷層滑動★ 以離心模型實驗探討逆斷層錯動下群樁基礎與土壤的互制反應
★ 九二一地震大里奇蹟社區倒塌原因之探討★ 群樁基礎之最低價設計
★ 應用遺傳演算法於群樁基礎低價化設計★ 應用Discrete Lagrangian Method於群樁基礎低價化設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要探討橋梁受車輛與地震載重作用所造成橋面板的振動反應,並期望尋找出適當的被動式調諧質量阻尼裝置(Tuned Mass Damper)設計參數以達到橋梁減振的目標。
研究中採用向量式有限元素法(VFIFE)建立結構動力數值模型,並在其中加入移動載重分析功能,將車體質量簡化為集中載重後再將移動載重以等值節點力的方式加入程式中進行分析,探討簡支型橋梁與連續型橋梁受到移動載重作用下之動態反應。在模型中加入TMD並調整其設計參數與配置方式後,針對橋面板減振效果加以討論。接著以一座三跨連續梁橋為目標橋梁,將TMD安裝於橋軸方向控制橋梁受地震作用下之位移反應,觀察結構物於線性與非線性的行為中,TMD設計週期之變化與橋梁位移控制效果之關係,最後比較TMD與黏滯性阻尼之減振功效。
經由分析結果得知,橋梁在受到車輛載重或是地震載重作用下,結構於線性與非線性階段中,均能夠找到合適的TMD設計參數有效的降低目標橋梁之振動反應。
摘要(英) This study discussed the dynamic response of bridges, which subjected to moving loads and earthquakes, and expect to mitigate the response of bridges by installing passive tuned mass damper (TMD). The purpose of this research is aimed to find the appropriate parameters for TMD to achieve the best performance of mitigating the dynamic response of bridges.
Vector Form Intrinsic Finite Element Method (VFIFE) was used to predict the bridges subjected to moving loads, which was simulated by equivalent nodal force. The daynamic behavior of simple support beam and continuous beam subjected to moving loads were discussed in this study. Besides, dynamic responses with considering different parameters and configurations of TMD were also been investigated. A three-span-continuous bridge with TMD in axial direction is used to reducing the displacement of bridge which subjected to earthquake. The effects of displacement control with the relation between non-linear structures and design period of TMD had been discussed. The comparison between viscous damper and TMD were shown at last.
The numerical results showed that the TMD can successfully reduced the dynamic response of bridges under moving loads or earthquakes while the structure is either in linear or non-linear behavior.
關鍵字(中) ★ 移動載重
★ 地震
★ 調諧質量阻尼
★ 向量式有限元素法
★ 橋梁
關鍵字(英)
論文目次 摘要……………………………………………………………………….I
Abstract…………………………………………………………………..II
目 錄…………………………………………………………………..III
圖 目 錄.……………………………………………………………….VI
表 目 錄……………………………………………………………...XIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 4
1.2.1 向量式有限元素法 4
1.2.2 移動載重 6
1.2.3 調諧質量阻尼裝置 8
1.3 研究內容 10
第二章 向量式有限元素法與移動載重 12
2.1 向量式有限元素法分析移動載重 12
2.1.1 等值節點力 13
2.1.2 移動載重模擬方法 16
2.2 簡支梁受移動載重振動理論(姚忠達與楊永斌, 2000) 18
2.3 數值分析驗證 23
2.4 簡支梁之振動反應 24
2.5 連續梁之振動反應 36
2.5.1 分析模型 36
2.5.2 分析結果 37
第三章 TMD應用於橋梁受車輛載重之減振 43
3.1 受移動載重作用之橋梁與TMD系統運動方程式 43
3.2 TMD之基本理論與設計參數 48
3.2.1 雙自由度TMD系統介紹(Den Hartog, 1956) 48
3.2.2 TMD設計參數(Den Hartog, 1956) 52
3.3 數值分析結果與探討 57
3.3.1 不同車輛載重對橋梁反應之影響 60
3.3.2 TMD於橋梁受車輛低速通過下之減振效果 68
3.3.3 TMD頻率比與阻尼比對於橋梁反應的影響 76
3.3.4 不同TMD配置方式對於橋梁減振效果的討論 82
第四章 TMD應用於橋梁受地震載重之減振 90
4.1 數值分析模型與地震震波 90
4.2 橋梁受移動載重與地震作用下之反應 94
4.3 TMD於線性結構之減振效果 99
4.4 TMD於非線性結構之減振效果 103
4.5 TMD與黏滯性阻尼之減振效果比較 116
第五章 結論與建議 122
5.1 結論 122
5.2 建議 125
參考文獻……………………………………………………………… 126
參考文獻 [1] Ayre, R. S., and Jacobsen, L. S. (1950), “Transverse Vibration of a Two-Span Beam Under Action of s Moving Alternating Force,” Applied Mechanics Division, Vol. 50, pp. 283-290.
[2] Candir, B., and Ozguven, H.N. (1986), “Dynamic vibration absorbers for reducing resonance amplitudes of hysterically damped beams,” Proceedings of the Fourth International Modal Analysis Conference, Los Angeles, CA, pp.1628-1635.
[3] Chopra, A.K. (2007), Dynamics of Structures, Pearson Printice Hall, New Jersey.
[4] Den Hartog, J.P. (1956), Mechanical Vibrations, McGraw-Hill, N.Y.
[5] Filho, F. V. (1996), “Dynamic Influence Lines of Beams and Frames,” Journal of the Structural Division, Vol.50, pp. 371-386.
[6] Frahm, H. (1909), Device for damped vibration of bodies, US Patent No.989958.
[7] Fryba, L. (1971), Vibration of Solids and Structures under Moving Loads, Groningen, The Netherlands: Noordhoff International Publishing.
[8] Kajikawa, Y., Okino, M., Matsuura, Y., and Iseki, J. (1989), “Contral of traffic vibration on urban viaduct with tuned mass dampers,” Journal of Structral Engineering: JSCE 35A, pp. 585-595.
[9] Kwon, H. C., Kim, M. C., and Lee, I. W. (1998), “Vibration contral of bridges under moving loads,” Journal of Computers and Structures, Vol. 66, No. 4, pp. 473-480.
[10] Law, S. S. Chan, T. H. T., and Zeng, Q. H. (1997), “Moving Force Identification - a Time Domain Method,” Journal of Sound and Vibration, Vol. 201, pp. 1-22.
[11] Lin, Y. H. (1995), “Comments on ‘Dynamic Response of a Beam with Intermediate Point Constraints Subject to a Moving Load,” Journal of Sound and Vibration, Vol. 180, pp. 809-812.
[12] Mackertich, S. (1990), “Moving Load on a Timoshenko Beam,” The Journal of the Acoustical Society of America, Vol. 88, pp. 1175-1178.
[13] Mahsa, M., Ebrahim, E., Ramin, S., and Peyman, K. (2011), “Vibration Control of Timoshenko Beam Traversed by Moving Vehicle Using Optimized Tuned Mass Damper,” Journal of Vibration and Contral, Vol. 18, No. 6, pp. 757-773.
[14] Moghaddas, M., Sedaghati, R., Esmailzadeh, E., and Khosravi, P. (2009), “Dynamic Finite Element Analysis of a Timoshenko Beam Traversed by a Moving Vehicle,” Journal of Multi-body Dynamics, Vol. 223, No. 3, pp.231-245.
[15] Neubert, V. H. (1964), “Dynamic absorbers applied to a bar that has solid damping,” Journal of Acoustical Society of America, Vol. 36, pp. 673-680.
[16] Olsson, M. (1991), “On the Fundamental Moving Load Problem,” Journal of Sound and Vibration, Vol. 145, pp. 299-307.
[17] Paz, M. (1991), Structures Dynamics-Theory and Computation, Van Nostrand Reinhold Company, N.Y.
[18] Petyt, M. (1990), Introduction to Finite Element Vibration Analysis, Cambridge: Cambridge University Press.
[19] Richardson, H. H., and Wormley, D. N. (1974), “Transportation Vehicle Beam - Elevated Guieway Dynamic Interactions - a State-of-the-Art Review,” Journal of Dynamic Systems, Measurement, and Control, Vol. 96, pp. 169-179.
[20] Sridharan, N., and Mallik, A. K. (1979), “Numerical Anlysis of Vibration of Beams Subjected to Moving Loads,” Journal of Sound and Vibration, Vol. 65, pp. 147-150.
[21] Shih C., Wang, Y. K. and Ting, E. C. (2004), “Fundamentals of a Vector Form Intrinsic Finite Element: Part III. Convected Material Frames and Examples,” Journal of Mechanics, Vol. 20, No. 2, pp. 133-143.
[22] Sonmez, M. (2011), “Discrete optimum design of structures using artificial bee colony algorithm,” Struct Multidisc Optim, Vol. 43, pp. 85-97.
[23] Steele, C. R. (1967), “The Finite Beam with a Moving Load,” Journal of Applied Mechanics, ASME, Vol. 34, pp. 111-118.
[24] Timoshenko, S. P. (1922), On the Forced Vibrations of Bridges, Phil. Mag., London, England.
[25] Ting, E. C., Genin J., and Ginsberg J. H. (1974), “A General Algorithm for Moving Mass Problems,” Journal of Sound and Vibration, Vol. 33, pp. 49-58.
[26] Ting, E. C., Shih, C. and Wang, Y. K. (2004), “Fundamentals of a Vector Form Intrinsic Finite Element: Part I. Basic Procedure and a Plane Frame Element,” Journal of Mechanics, Vol.20, No.2, pp.113-122.
[27] Ting, E. C., Shih, C. and Wang, Y. K. (2004), “Fundamentals of a Vector Form Intrinsic Finite Element: Part II. Plane Solid Elements,” Journal of Mechanics, Vol.20, No.2, pp. 123-132.
[28] Wang, C. Y. Wang, R. Z. Kang, L. C. and Ting, E. C. (2004) ,“Elastic-Plastic Large Deformation Analysis of 2D Frame Structure,” Proceedings of the 21st International Congress of Theoretical and Applied Mechanics (IUTAM), SM1S-10270, Warsaw, Poland, August 15-21.
[29] Wang, J. F., Lin, C. C., Chen, B. L. (2003), “Vibration Suppression for High-speed Railway Bridges Using Tuned Mass Dampers,” International Journal of Solids and Structures, Vol. 40, pp.465-491.
[30] Wang, R. T., and Lin, J. S. (1998), “Vibration of Multi-Span Timoshenko Frames due to Moving Loads,” Journal of Sound and Vibration, Vol. 212, pp. 417-434.
[31] Wang, R. T., and Lin, T. Y. (1998), “Random Vibration of Multi-Span Timoshenko beam due to a Moving Load,” Journal of Sound and Vibration, Vol. 213, pp. 127-138.
[32] Wu, J. S., and Dai, C. W. (1987), “Dynamic Responses of Multi-Span Nonuniform Beam due to Moving Loads,” Journal of Structural Engineering, Vol. 113, pp. 458-74.
[33] Wu, J. S., Lee, M. L., and Lai, T. S. (1987), “The Dynamic Analysis of a Flat Plate under a Moving Load by the Finite Element Method,” International Journal for Numerical Method in Engineering, Vol. 24, pp. 743-762.
[34] Wu, J. J., Whirttaker, A. R., and Cartmell, M. P. (2000), “The Use of Finite Element Techniques for Calculating the Dynamic Response of Structures to Moving Loads,” Computers and Structures, Vol. 78, pp. 789-799.
[35] Wu, T. Y., Wang, R. Z. and Wang, C. Y. (2006), “Large Deflection Analysis of Flexible Planar Frames,” Journal of the Chinese Institute of Engineers, Vol. 29, No. 4, 593-606.
[36] Yang, Y. B., Lin, C. L., Yau, J. D., and Chang, D. W. (2004), “Mechanism of Resonance and Cancellation for Train-Induced Vibrations on Bridges with Elastic Bearings,” Journal of Sound and Vibration, Vol.269, pp. 345-360.
[37] Yang, Y. B., and Lin, B. H. (1995), “Vehicle-Bridge Interaction Analysis by Dynamic Condensation Method,” Journal of Structural Engineering, Vol. 121, pp. 1636-1643.
[38] Yang, Y. B., Yau, J. D., and Hsu, L. C. (1997), “Vibration of Simple Beams due to Trains Moving at High Speeds,” Engineering Structures, Vol. 19, pp. 936-944.
[39] Yau, J. D., and Yang, Y. B. (2006), “Vertical Accelerations of Simple Beams due to Successive Loads Traveling at Resonant Apeeds,” Journal of Sound and Vibration, Vol. 289, pp. 210-228.
[40] Zibdeh, H. S. (1995), “Stochastic Vibration of an Elastic Beam due to Random Moving Loads and Deterministic Axial Forces,” Engineering Structures, Vol. 17, pp. 530-535.
[41] 王仁佐(2005),「向量式結構運動分析」,國立中央大學土木工程學研究所博士論文。
[42] 李姿瑩、陳柏宏、王仁佐(2008),「含非線性阻尼裝置隔震橋梁之向量式有 限元分析」,中華民國第九屆結構工程研討會,高雄,台灣。
[43] 姚忠達、楊永斌(2000),高速鐵路車-橋互制理論,圖文技術服務有限公司,第49-82頁。
[44] 陳柏宏(2008),「運用向量式有限元素法於隔震橋梁之非線性動力分析」,國立中央大學土木工程學研究所碩士論文。
[45] 陳柏宏、李姿瑩、王仁佐(2007),「含防止落橋裝置隔震橋梁之向量式有限元分析」,中華民國力學學會第三十一屆全國力學會議,高雄,台灣。
指導教授 莊德興 審核日期 2014-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明