博碩士論文 101322029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.149.230.44
姓名 黃敏彥(Min-Yen Hunag)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 橋梁直接基礎搖擺之極限分析
(Dynamic Analysis of Bridges with Rocking Isolation in Ultimate States)
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 塑鉸極限破壞數值模型開發★ 考量斷層錯動與塑鉸破壞之橋梁極限分析
★ Impact response and shear fragmentation of RC buildings during progressive collapse★ 應用多項式滾動支承之隔震橋梁研究
★ Numerical Simulation of Bridges with Inclined★ 橋梁三維極限破壞分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年地震對台灣造成許多的災害,使耐震設計規範之設計地震力提高,導致部分補強和新建案例之直接基礎尺寸明顯過大。其主要原因乃設計地震力提高,穩定性檢核時基礎受壓面積仍須滿足原有規定,所以基礎尺寸必須擴大。依據過去地震經驗發現直接基礎之搖擺機制可降低傳遞至上部結構之地震力,並且透過搖擺機制產生振動周期延長降低地震力,也可藉由土壤於大地震下之塑性行為吸收地震能量。本研究旨在開發土壤元素模型(Soil Element)建立土壤與基礎互制之構件,模擬橋梁於強震中土壤與基礎之高度非線性行為。
本研究採用向量式有限元素(Vector Form Intrinsic Finite Element)為結構動力分析方法,此方法適用於處理大變形、大變位、材料非線性與剛體運動等問題。為了模擬土壤與基礎互制關係,本研究引入溫克勒模型(Winkler-based models),溫克勒模型可用以模擬垂直向土壤(q-z spring)、側向被動土壤(p-x spring)與土壤結構間摩擦力(t-x spring),經由算例分析驗證此土壤彈簧之正確性,並且藉由單跨梁橋證實直接基礎搖擺機制之隔震作用,最後以五跨連續梁橋作為模型,探討其參數變化對橋梁之影響,並模擬至極限狀態,瞭解橋梁在在極限狀態下之橋梁反應。
摘要(英) In recent years, the earthquake caused many disasters in Taiwan, so seismic design specification to improve the design seismic forces. Therefore the spread foundation wide obviously is too large in some reinforcement and new cases. The main reason is improving the design seismic forces. And the foundation of pressured area have to satisfy the specification, therefore the size of foundation must be expanded. Based on the past experience, the rocking mechanism of spread foundation can reduce the seismic force of the main structure, besides it can extend the period of structure and decrease the seismic force. In addition, the soil will generate the plastic behavior and absorb the seismic energy under the extreme earthquake. This study aims to develop new soil element model and build the soil and foundation of components.
The Vector Form Intrinsic Finite Element (VFIFE), a new computational method is adopted in this study because the VFIFE has the superior in managing the engineering problems with material nonlinearity, discontinuity, large deformation and arbitrary rigid body motions of deformable bodies. In order to simulate the interaction between soil and foundation, the study use Winkler model (Winkler-based models). Winkler model can simulate the vertical soil (q-z spring), lateral passive soil (p-x spring) and the friction force between soil and foundation (t-x spring). Through numerical simulation of examples to verify the soil element model are feasible and accurate. Besides, using the single-span bridge to confirm the rocking mechanism of spread foundation has the isolation effect. Finally, five-span continuous bridge as a model to investigate the effect of the parameter changes, and to understand the bridge behavior in ultimate condition.
關鍵字(中) ★ 向量式有限元素
★ 極限狀態
★ 橋梁
★ 動力分析
★ 直接基礎
★ 搖擺機制
關鍵字(英) ★ VFIFE
★ ultimate state
★ bridge
★ dynamic analysis
★ spread foundation
★ rocking mechanism
論文目次 摘 要 Ⅰ
Abstract Ⅱ
誌 謝 Ⅲ
目 錄 Ⅳ
表 目 錄 Ⅶ
圖 目 錄 Ⅷ
第一章 緒論 1
1.1研究背景與動機 1
1.2文獻回顧 3
1.2.1向量式有限元素法 3
1.2.2直接基礎搖擺機制 6
1.3論文架構 9
第二章 向量式有限元素法 10
2.1結構離散模式 11
2.2質點運動方程式 11
2.3運動軌跡離散化 13
2.4變形與內力計算 14
第三章 土壤與直接基礎互制關係 31
3.1前言 31
3.2土壤彈簧勁度之相關規範與計算 32
3.2.1公路橋樑耐震設計規範之補充研究 32
3.2.2日本道路橋示方書.同解說 37
3.2.3公路橋樑耐震性能設計規範解說 40
3.3溫克勒模型 41
3.3.1垂直向土壤彈簧 42
3.3.2水平向被動土壤彈簧 44
3.3.3水平向剪力土壤彈簧 47
3.4極限乘載容量 49
3.4.1垂直向極限乘載容量 49
3.4.2水平向被動極限乘載容量 51
3.4.3水平向剪力土極限乘載容量 53
3.4土壤阻尼 53
第四章 數值算例驗證 61
4.1非線性土壤彈簧之建立 61
4.1.1垂直向土壤彈簧 61
4.1.2水平向被動土壤彈簧 62
4.1.3水平向剪力土壤彈簧 65
4.2土壤彈簧元素之向量式有限元素分析 67
4.2.1土壤彈簧參數計算 68
4.2.2土壤彈簧驗證 68
4.3驗證搖擺直接基礎橋梁之消能行為 70
4.4小結 72
第五章 橋梁實例分析與參數研究 90
5.1目標橋梁與分析模型 90
5.2數值分析模型 91
5.2.1上部結構模擬 91
5.2.2下部結構模擬 93
5.2.3支承系統模擬 95
5.2.4防止落橋裝置模擬 96
5.2.5土壤彈簧參數 98
5.3線性與非線性土壤彈簧 100
5.4參數探討 104
5.4.1標準貫入試驗N值 104
5.4.2基礎尺寸大小 111
5.5小結 118
第六章 結論與未來展望 181
參考文獻 185
參考文獻 [1] API (1987), Recommended Practice for Planning, Designing and Constructing Fixed Off-shore Platforms API Recommended Practice 2A (RP2A), Seventeenth Edition, American Petrolium Institute
[2] Apostolou, M., Gazetas, G. and Garini, E. (2006), “Seismic response of slender rigid structures with foundation uplifting,” Soil Dynamics and Earthquake Engineering, Vol. 27, pp.642-654.
[3] Boulanger, R. W., Curras, C. J., Kutter, B. L., Wilson D. W. and Abghari, A. (1999), “Seismic Soil-Pile-Structure Interaction Experiments And Analysis, ” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 9, pp. 750-759.
[4] Davis, J. B. and George, H. (2005), “Dynamic response considering rocking of foundations,” ECI 285-Computational Geomechanics.
[5] Deng, L., Kutter, B. L. and Kunnath, S. K. (2012), “Centrifuge modeling of bridge systems designed for rocking foundations,” J. Geotech. Geoenviron. Eng., Vol. 137, No. 3, pp. 335-344.
[6] Gazetas, G. and Dobry, R. “Simple Radiation Damping Model for Piles and Footings,” Journal of Engineering Mechanics, Vol. 110, No. 6, pp. 937-956, 1984.
[7] Housner, G. W. (1963), “The behavior of inverted pendulum structures during earthquakes,” Bulletin of the Seismological of America, Vol.53, No. 2, pp. 403-417.
[8] Hung, H. H., Liu, K.Y., Ho, T. H. and Chang K. C. (2010), “An experimental study on the rocking response of bridge piers with spread footing foundations,” Earthquake Engineering Structural Dynamics, Vol. 40 pp. 749-769.
[9] Gibbs, H. J. and Holtz, W.G. (1957), “Research on Determining the Density of Sands by Spoon Testing.” Proc. 4th International Conference on Soil Mechanics and Foundation Engineering, Lodon, England ,Vol. 1 pp. 35,39.
[10] Japan Road Association, 2002. Specifications for Highway Bridges, Part IV Substructures, Tokyo, Japan.
[11] Japan Road Association, 2002. Design Specification of Highway Bridges, Part V Seismic Design, Maruze, Tokyo, Japan.
[12] Kawashima, K. and Unjoh, S. (1989), “Rocking response of a rigid foundation subjected to seismic excitations,” Civil Engineering Journal, Japan, Vol. 32, No. 10, pp. 60-66.
[13] Kawashima, K. and Unjoh, S. (1991), “Overturning of rigid foundation resting on ground with insufficient yield strength,” Civil Engineering Journal, Japan, Vol. 33, No. 3, pp. 54-59.
[14] Kawashima, K., Unjoh, S. and Mukai, H. (1994), “Inelastic rocking of direct foundation during an earthquake,” Civil Engineering Journal, Japan, Vol. 36, No. 7, pp. 50-55.
[15] Kawashima, K., Watanabe, G., Sakeraraki, D. and Nagai, T. (2005), “Rocking isolation of bridge foundations,” 9th World Seminar on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, Kobe, Japan, June 13-16.
[16] Kawashima, K. and Nagai, T. (2006), “Effectiveness of rocking seismic isolation on bridge,” 4th International Conference on Earthquake Engineering, Taipei, Taiwan, October 12-13.
[17] Kawashima, K. (2009), “Rocking seismic isolation of bridges supported by direct foundations,” Caltrans-PEER Seismic Research Seminar Sacramento, CA, USA.
[18] Lysmer, J. “Vertical Motions of Rigid Footings (1965),” Thesis of Doctor of Science, University of Michigan, U.S.A
[19] Mergos, P. E. and Kawashima, K. (2005), “Rocking isolation of a typical bridge pier on spread foundation,” Journal of Earthquake Engineering, Vol. 9, No. 2, pp. 395-414.
[20] OpenSees (2008), “Open System for Earthquake Engineering Simulation: OpenSees.” Pacific Earthquake Engineering Research Center (PeeR), University of California, Berkeley.
[21] Paolucci, R. and Pecker, A. (1997), “Seismic bearing capacity of shallow strip foundation on dry soils,” Soils and Foundations, Vol. 37, No. 3, pp. 95-105.
[22] Raychowdhury, P. and Hutchinson, T. C. (2009), “Performance evaluation of a nonlinear winkler-based shallow foundation model using centrifuge test results,” Earthquake Engng Struct. Dyn., Vol. 38, pp. 679-698.
[23] Sakellaraki, D., Watanabe, G. and Kawashima, K. (2005), “Experimental rocking response of direct foundation of bridge,” Second International Conference on Urban Earthquake Engineering, Tokyo Institute of Technology, Tokyo, Japan, March7-8, pp. 497-504.
[24] Sakellaraki, D. and Kawashima, K. (2006), “Effectiveness of seismic rocking isolation of bridges based on shake table test,” First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland, September 3-8.
[25] Wang, S., Kutter, B. L., Chacko, M. J., Daniel, W., Wilson, D. R., Boulanger, W. and Abghari, A. (1998), “Nonlinear Seismic Soil-Pile Structure Interaction,” Earthquake Spectra, Volume 14, No. 2, pp. 377-396.
[26] Terzaghi, K. and Peck, R. B. (1948). Soil Mechanics in Engineering Practice. John Wiley and Sons, New York, NY.
[27] Ting, E. C., Shih, C. and Wang, Y. K. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part I. Basic Procedure and a Plane Frame Element," Journal of Mechanics, Vol.20, No.2, pp. 113-122.
[28] Ting, E. C., Shih, C. and Wang, Y. K. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part II. Plane Solid Elements," Journal of Mechanics, Vol.20, No.2, pp. 123-132.
[29] Shih, C., Wang, Y. K. and Ting, E. C. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part III. Convected Material Frames and Examples," Journal of Mechanics, Vol.20, No.2, pp. 133-143.
[30] Wang, C. Y., Wang, R. Z., Kang, L. C. and Ting, E. C. (2004), "Elastic-Plastic Large Deformation Analysis of 2D Frame Structure," Proceedings of the 21st International Congress of Theoretical and Applied Mechanics (IUTAM), SM1S-10270, Warsaw, Poland, August 15-21.
[31] Wu, T. Y., Wang, R. Z. and Wang, C. Y. (2006), "Large Deflection Analysis of Flexible Planar Frames," Journal of the Chinese Institute of Engineers, Vol. 29, No. 4, pp. 593-606.
[32] Wang, C. Y. and Wang, R. Z. (2008), “Nonlinear Dynamic Analysis of Space Frame Structures,” Proceedings of the 6th International Conference on Computation of Shell and Spatial Structures, Cornell University, Ithaca, NY, USA.
[33] Watanabe, G. and Kawashima, K. (2004), "Numerical Simulation of Pounding of Bridge Decks," 13th World Conference on Earthquake Engineering.
[34] 王仁佐 (2005),「向量式結構運動分析」,國立中央大學土木工程學研究所博士論文,指導教授:王仲宇、盛若磐。
[35] 莊清鏘、陳詩宏、王仲宇 (2006),〝向量式有限元於結構被動控制之應用〞,固體與結構之工程計算-2006近代工程計算論壇,第O1-O25頁。
[36] 陳柏宏 (2008),「運用向量式有限元素法於隔震橋梁之非線性動力分析」,國立中央大學土木工程學研究所碩士論文,指導教授:李姿瑩。
[37] 陳開天 (2010),「橋梁碰撞效應研究」,國立中央大學土木工程學研究所碩士論文,指導教授:李姿瑩。
[38] 汪栢靈 (2010),「橋梁極限破壞分析與耐震性能研究」,國立中央大學土木工程學研究所碩士論文,李姿瑩。
[39] 洪曉慧、張國鎮、劉光晏、何姿慧 (2008),「直接基礎之搖擺實驗與分析」,國家地震工程研究中心,報告編號:NCREE-08-040。
[40] 賴姿妤 (2011),「樁基礎沖刷橋梁模型之振動台試驗研究」,碩士論文,國立台灣大學土木工程研究所,張國鎮。
[41] 蔡益超、張荻薇、黃震興 (1997),「公路橋梁耐震設計規範之補充研究」,交通部台灣區國道新建工程局
[42] 宋裕棋 (2012),「公路橋梁耐震性能設計規範研究(第二期)上冊」,交通部台灣區國道新建工程局
指導教授 李姿瑩(Tzu-Ying Lee) 審核日期 2013-10-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明