博碩士論文 101322035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:35.172.233.2
姓名 吳羽帆(Yu-fan Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 水化早期溫度對延遲性鈣礬石形成之影響
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文利用實驗探討混凝土延遲性鈣礬石形成的影響因子,實驗變因包括:水化早期的溫度(室溫、70˚C 及 85˚C)、高溫延時(12 小時、48 小時與 10 天)、粒料種類(反應性及非反應性粒料)及硫含量(2.46%及 5%),量測及觀察項目包括:膨脹量、裂縫發展、顯微觀測及元素分析。本文定期量測試體膨脹量並紀錄裂縫發展歷程,此外,利用掃描式電子顯微鏡對延遲性鈣礬石之晶體及元素組成進行微觀分析。研究結果顯示,溫度高低是影響延遲性鈣礬石形成的關鍵;試體若在水化早期經歷高溫,約於 300~500 天後會發生明顯膨脹,且試體水化早期經歷溫度越高,後期膨脹量也越大。在高溫延時方面,試體於水化早期處於高溫環境越久,會使延遲性鈣礬石提早形成,試體提早發生膨脹。硫含量 5%的試體有明顯膨脹發生,2.46%的試體即使經過高溫也不會發生膨脹。在電子顯微鏡觀察下一般鈣礬石及延遲性鈣礬石之形貌及元素組成均極為類似,故難以加以區分;兩者最大的差異在於形成的位置,一般鈣礬石為水泥水化早期(約數天)的產物,故常散佈於水泥漿體中,而延遲性鈣礬石為水泥硬固後,經歷長時間(數百天或數年),緩慢地於孔隙及微裂縫中再次進行鈣礬石反應形成,將孔隙及微裂縫擴大,導致劣化,故延遲性鈣礬石多存在於孔隙及裂縫中,且常沿孔隙壁面及裂縫面生長。
摘要(英) This paper used some laboratory experimental tests to investigate the deterioration factors for delayed ettringite formation (DEF) in concrete, includes hydration temperatures (20˚C, 70˚C, and 85˚C), heating
durations (12 hours, 48 hours and 10 days), aggregate types (reactive and Non-reactive), and sulfate contents (2.46% and 5%). The experiments observations included specimen expansions, crack propagations, and microanalyses (Scanning Electron Microscopy, SEM; Energy Dispersive Spectrometer, EDS). The results show that DEF could occur in high hydration temperature and high sulfate content environment; the expansion will rapidly increase in 300~500 days (concrete age), which had a positive correlation with hydration temperature; there was no DEF occurred in low sulfate contents (2.46%). For specimens were cured at long period high temperature heating duration, DEF will occur earlier than which were cured at short period high temperature heating duration. Until now, to identify “normal ettringite” and “delayed ettringite” in SEM and EDS analyses is difficult, but still could be determined by ettringite locations.
關鍵字(中) ★ 延遲性鈣礬石
★ 鹼-骨材反應
★ 高溫養護
★ 水化熱
關鍵字(英) ★ Delayed ettringite formation (DEF)
★ Alkali-aggregate reaction (AAR)
★ Heat treatment
★ Hydration temperature
論文目次 摘要......................................... II
Abstract.................................... III
致謝......................................... IV
目錄......................................... V
圖目錄........................................ VIII
表目錄........................................ XVI
照片目錄...................................... XIX
第一章 緒論.................................. 1
1-1 研究動機.................................. 1
1-2 研究目的.................................. 2
1-3 研究方法.................................. 2
1-4 論文內容及架構............................. 3
第二章 文獻回顧............................. 4
2-1 延遲性鈣礬石形成的案例....................... 4
2-2 延遲性鈣礬石晶體............................ 6
2-2-1 鈣礬石晶體之組成.......................... 6
2-2-2 鈣礬石晶體之形貌.......................... 6
2-3 延遲性鈣礬石形成之劣化機制.................... 10
2-4 延遲性鈣礬石之形成條件....................... 14
2-4-1 水泥中硫含量............................. 14
2-4-2 高濕度環境............................... 16
2-4-3 水化早期的高溫環境........................ 17
2-4-4 孔隙與微小裂縫............................ 19
2-5 延遲性鈣礬石形成之診斷....................... 21
2-6 延遲性鈣礬石形成之抑制方法.................... 23
第三章 實驗規劃與方法........................... 28
3-1 實驗規劃................................... 28
3-2 試驗材料................................... 33
3-2-1 水泥.................................... 33
3-2-2 粒料.................................... 34
3-2-3 添加劑................................... 35
3-3 實驗方法與步驟.............................. 36
3-3-1 混凝土角柱製作............................ 36
3-3-2 膨脹量量測............................... 41
3-3-3 裂縫密度量測.............................. 43
3-3-4 微觀分析................................. 44
第四章 試驗結果與討論........................... 47
4-1 膨脹量量測結果.............................. 47
4-1-1 水泥砂漿棒............................... 47
4-1-2 混凝土角柱............................... 52
4-2 裂縫發展................................... 59
4-3 微觀分析結果................................ 70
第五章 結論................................... 99
5-1 結論...................................... 99
5-2 建議...................................... 101
參考文獻....................................... 102
附錄 A、混凝土角柱試體之裂縫發展................... 107
參考文獻 1. 田永銘、朱正安、鐘翊展、盧育辰、張道武、張少秋、官毅明,「高鐵里程 TK340~TK343 高架橋墩柱裂縫成因研究」,台灣高速鐵路股份有限公司研究計劃成果報告(2010)。
2. 官毅明,「鹼-矽膠體的形貌與組成」,碩士論文,國立中央大學土木工程學系,中壢(2011)。
3. 張文恭,「花蓮地區單一岩種之鹼-骨材反應研究」碩士論文,國立中央大學土木工程學系,中壢(2000)。
4. 張庭華,「海岸山脈安山岩之鹼-骨材反應特性及抑制方法」碩士論文,國立中央大學土木工程學系,中壢(2001)。
5. 郭偉民,「延遲性鈣礬石形成與鹼-骨材反應引致劣化機制」,碩士論文,國立中央大學土木工程學系,中壢(2012)。
6. 黃兆龍,混凝土性質與行為,詹氏書局,台北(1997)。
7. ASTM Standard C1293-08b, “Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction,” Annual Book of ASTM Standards, (2008).
8. ASTM Standard C227-10, “Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method),” Annual Book of ASTM Standards, (2010).
9. ASTM Standard C490-11e01, “Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete,” Annual Book of ASTM Standards, (2011).
10. ASTM Standard C778-13, “Standard Specification for Standard Sand,” Annual Book of ASTM Standards, (2013).
11. Aubert, J. E., Escadeillas, G., and Leklou, N., “Expansion of five-year-old mortars attributable to DEF: Relevance of the laboratory studies on DEF,” Construction and Building Materials, Vol. 23, Issue 12, pp. 3583-3585 (2009).
12. Brunetaud, X., Divet, L., and Damidot, D., “Impact of unrestrained Delayed Ettringite Formation-induced expansion on concrete mechanical properties,” Cement and Concrete Research, Vol. 38, Issue 11, pp. 1343-1348.
13. Collepardi, M., “A state of the art review on delayed ettringite attack on concrete,” Cement and Concrete Composites, Vol. 25, pp. 401-407 (2003).
14. Diamond, S., “Delayed ettringite formation — Processes and problems,” Cement and Concrete Composites, Vol. 18, Issue 3, pp. 205-215 (1996).
15. Diamond, S., “The relevance of laboratory studies on delayed ettringite formation to DEF in field concretes,” Cement and Concrete Research, Vol. 30, Issue 12, pp. 1987-1991 (2000).
16. Divet, L., and Pavoine. A., “Delayed ettringite formation in massive concrete structures: An account of some studies of degraded bridges,” International RILEM TC 186-ISA Workshop on Internal Sulfate Attack and Delayed Ettringite Formation, pp. 98-126 (2002).
17. Ekolu, S. O., Thomas, M. D. A., and Hooton, R. D., “Pessimum effect of externally applied chlorides on expansion due to delayed ettringite formation: Proposed mechanism,” Cement and Concrete Research, Vol. 36, Issue 4, pp. 688-696 (2000).
18. Escadeillas, G., Aubert, J. E., Segerer, M., and Prince, W., “Some factors affecting delayed ettringite formation in heat-cured mortars,” Cement and Concrete Research, Vol. 37, Issue 10, pp. 1445-1452 (2007).
19. Famy, C., Scrivener, K. L., Atkinson, A., and Brough, A. R., “Influence of the storage conditions on the dimensional changes of heat-cured mortars,” Cement and Concrete Research, Vol. 31, Issue 5, pp. 795-803 (2001).
20. Famy, C., Scrivener, K. L., Atkinson, A., and Brough, A. R., “Effects of an early or a late heat treatment on the microstructure and composition of inner C-S-H products of Portland cement mortars,” Cement and Concrete Research, Vol. 32, Issue 2, pp. 269-278 (2002).
21. Fu, Y., and Beaudoin, J. J., “Microcracking as a precursor to delayed ettringite formation in cement systems,” Cement and Concrete Research, Vol. 26, Issue 10, pp. 1493-1498 (1996).
22. Fu, Y., Ding, J., and Beaudoin, J. J., “Expansion of portland cement mortar due to internal sulfate attack,” Cement and Concrete Research, Vol. 27, Issue 9, pp. 1299-1306 (1997).
23. Hime, W. G., “Delayed ettringnite formation–A concern for precast concrete, ” PCI Journal, pp. 26–30 (1996).
24. Katsioti, M., Patsikas, N., Pipilikaki, P., Katsiotis, N., Mikedi, K., and Chaniotakis, M., “Delayed ettringite formation (DEF) in mortars of white cement,” Construction and Building Materials, Vol. 25, Issue 2, pp. 900-905 (2011).
25. Kelham, S., “The effect of cement composition and fineness on expansion associated with delayed ettringite,” Cement and Concrete Composites, Vol. 18, Issue 3, pp. 171-179 (1996).
26. Lee, H., “The formation and role of ettringite in Iowa highway concrete deterioration,” Cement and Concrete Research, Vol. 35, pp. 332-343 (2005).
27. Lewis, M. C., Scrivener, K.L., and Kelham, S., “Heat curing and delayed ettringite formation,” Materials Research Society, Vol. 370, pp. 67–76 (1995).
28. Mielenz, R. C., Marusin, S.L., Hime, W.G., and Jugovic, Z.T., “Investigation of prestressed concrete railway tie distress,” Concrete International, Vol.17, No.12, pp. 62-68 (1995).
29. Nguyen, V. H., Leklou, N., “The effect of natural pozzolan on delayed ettringite formation of the heat-cured mortars,” Construction and Building Materials, Vol. 48, pp. 479-484 (2013).
30. Pavoine, A., Divet, L., and Fenouillet, S., “A concrete performance test for delayed ettringite formation: Part I optimization,” Cement and Concrete Research, Vol. 36, Issue 12, pp. 2138-2143 (2006).
31. Pavoine, A., Divet, L., and Fenouillet, S., “A concrete performance test for delayed ettringite formation: Part II validation,” Cement and Concrete Research, Vol. 36, Issue 12, pp. 2144-2151 (2006).
32. Ronne, M. and Hammer, T. A., “Delayed ettringite formation (DEF) in structural lightweight aggregate concrete: effect of curing temperature, moisture, and silica fume content,” Cement, Concrete, and Aggregates, CCAGDP, Vol. 21, NO. 2, pp. 202-211 (1999).
33. Sahu, S., and Thaulow, N., “Delayed ettringite formation in Swedish concrete railroad ties,” Cement and Concrete Research, Vol. 34, Issue 9, pp. 1675-1681 (2004).
34. Shaikh, H. (2007), “Mitigation of delayed ettringite formation in laboratory specimens,” M.S. thesis, University of Maryland, College Park, USA.
35. Shimada, Y., and Young, J. F., “Thermal stability of ettringite in alkaline solutions at 80˚C,” Cement and Concrete Research, Vol. 34,Issue 12, pp.2261-2268 (2004).
36. Stark, J., and Bollmann, K., “Delayed Ettringite Formation in Concrete,” ZKG International, Vol. 53, Issue 4, pp. 232-240 (2000).
37. Taylor, H. F. W., Famy, C., and Scrivener, K. L., “Delayed ettringite formation,” Cement and Concrete Research, Vol. 31, Issue 5, pp. 683-693 (2001).
38. Thomas, M. D. A., “Delayed ettringite formation: recent developments and future directions,” American Ceramics Society, Materials Science of Concrete VI, pp. 435–481 (2001).
39. Thomas, M., Folliard, K., Drimalas, T., and Ramlochan, T., “Diagnosing delayed ettringite formation in concrete structures,” Cement and Concrete Research, Vol. 38, Issue 6, pp. 841-847 (2008).
40. Tosun, K., “Effect of SO3 content and fineness on the rate of delayed ettringite formation in heat cured Portland cement mortars,” Cement and Concrete Composites, Vol. 28, pp. 761-772 (2006).
41. Yang, R., Lawrence, C. D., Lynsdale, C. J., and Sharp, J. H., “Delayed ettringite formation in heat-cured Portland cement mortars,” Cement and Concrete Research, Vol. 29, Issue 1, pp. 17-25 (1999).
42. Zhang, M., Chen, J., Lv, Y., Wang, D., and Ye, J., “Study on the expansion of concrete under attack of sulfate and sulfate–chloride ions,” Construction and Building Materials, Vol. 39, pp. 26-32 (2013).
指導教授 田永銘(Yong-ming Tien) 審核日期 2014-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明