博碩士論文 101322037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:75.101.220.230
姓名 劉文智(Wen-Chih Liu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以數值模擬層狀岩石巴西試驗
(Numerical simulation for layered rock under Brazilian test)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本文以顆粒流程式PFC2D(Particle Flow Code2D)模擬層狀岩石在巴西試驗(Brazilian test)下之張力強度(tensile strength)、破壞過程及破壞模態(failure modes),並探討在材料層厚比與強度比變化對各巴西試驗之影響。進行層狀岩石模擬前,本文亦針對等向性岩石巴西試驗進行相關參數研究(包括:微觀參數敏感性分析、尺寸效應、位移速率與原生異向性等)。數值模擬結果顯示:層面傾角(θ)、材料強度比與層厚比皆會影響張力強度。隨著層面傾角增加,使張力強度遞減。隨材料強度比增加,在各傾角狀況下,張力強度皆有大幅遞增之趨勢。此外,改變材料層厚比所對應之張力強度則受到傾角所影響,於低傾角狀況下張力強度隨層厚比增加而遞增,而高傾角則不因層厚比影響張力強度。層狀岩石受力達尖峰強度前,僅在受力點附近有少數微裂隙生成,試體其餘處並無任何裂縫生成。過尖峰強度後,受力點附近之微裂隙迅速向試體中心處延伸。裂縫之發展亦受傾角影響甚鉅,形成不同的破壞模態,可分為四類:(1)穿層劈裂模態(Split across layer mode) (2)層間滑動模態(Sliding along layer mode) (3)混合模態(Mixed mode)與(4)層間劈裂模態(Split along layer mode)。最後,本文數值模擬結果亦與Cho et al. (2012)實驗結果進行比較,無論在強度、破壞模態與彈性常數部分結果相符。
摘要(英) This paper employs 2-D Particle Flow Code (PFC2D) to simulate layered rocks and focuses on the tensile strength, failure process, and failure modes under Brazilian test. Besides, this paper presents the effect of layer thickness ratio and strength ratio on tensile strength and failure modes. Before simulating layered rocks, this paper also performs the parametric studies (including the sensitive analysis of micro-parameters, size effect, displacement rate, and inherent anisotropy) of isotropic rocks under Brazilian test. Based on the numerical simulation results, the inclination angle (θ), layer thickness ratio, and strength ratio all have significant effects on Brazilian tensile strength. The tensile strength of layered rocks decrease with the increase of inclination angle, and the tensile strength would increase with the increase of strength ratio. The tensile strength of layered rock would also increase with the increase of layer thickness ratio when the low inclination angle; however, there is no significant effect when the layered rock with high inclination angle. During Brazilian test, the micro-crack of layered rock initiate at pre-peak. Besides, the micro-cracks are limited around the edge of specimen and propagate slowly until the peak is reached. After post-peak, the crack propagate rapidly and we observe four major failure modes in these numerical simulations:(1)Split across layers mode;(2)Sliding along layer mode;(3)Mixed mode;(4)Split along layer mode. In this paper, we also verify our simulation result to experimental results from Cho et al.(2012). The strength anisotropy, elastic constants and failure modes almost agree with experimental results.
關鍵字(中) ★ 層狀岩石
★ 巴西試驗
★ 破壞模態
★ 張力強度
關鍵字(英) ★ layered rock
★ Brazilian test
★ failure mode
★ tensile strength
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 V
圖目錄 IX
表目錄 XVIII
符號說明 XXI
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法與目的 4
1.3 研究架構 5
第二章 文獻回顧 6
2.1 橫向等向性岩石之定義與材料組成率 6
2.2 橫向等向性岩石之彈性常數求取 8
2.3 室內岩石張力試驗 10
2.4 巴西試驗相關研究 16
2.4.1 橫向等向性岩石張力強度解析解 16
2.4.2 破壞過程觀察與模擬 19
2.4.3 橫向等向性岩石破壞模態分類 26
2.4.4 張力強度之異向性 32
2.4.5 橫向等向性岩石相關參數研究 40
第三章 數值模擬方法 44
3.1顆粒流程式PFC2D軟體介紹 44
3.1.1 PFC2D程式簡介 44
3.1.2 PFC2D特色 46
3.1.3顆粒接觸模式 48
3.1.4 PFC2D相關應用 54
3.2數值分析作業 55
3.2.1層面傾角定義 55
3.2.2層狀岩石建置步驟 56
3.2.3試體受力與變位之紀錄 62
3.3參數設定 63
第四章 數值模擬結果與探討 65
4.1 等向性岩石巴西試驗模擬 65
4.1.1微觀參數敏感性分析 65
4.1.2尺寸效應與不確定性 84
4.1.3圓形顆粒設定厚度之影響探討 89
4.1.4阻尼係數(Damping coefficient)影響探討 92
4.1.5位移速率之影響 94
4.1.6試體之原生異向性 97
4.1.7等向性岩石破壞過程 103
4.2層狀岩石模擬結果 107
4.2.1單軸壓縮試驗模擬及彈性常數求取 108
4.2.2巴西試驗破壞過程 120
4.2.3巴西試驗之破壞模態 126
4.2.4巴西張力強度之異向性 130
4.3層狀岩石參數研究之模擬探討 132
4.3.1材料層厚比對巴西試驗結果影響 132
4.3.2材料強度比對巴西試驗結果影響 154
第五章 結論與建議 174
5.1 結論 174
5.2 建議 177
參考文獻 178
附錄1- 46th US Rock Mechanics / Geomechanics Symposium, Chicago, June 2012 182
附錄2 -Taiwan Rock Engineering Symposium, October, 25-26, 2012 NUU, Miaoli, Taiwan 189
附錄3- The 36th National Conference on Theoretical and Applied Mechanics, November 16-17, 2012 199
附錄4- 47th US Rock Mechanics / Geomechanics Symposium, San Francisco, June 2013 207
參考文獻 1. 朱秀雯、鄭大偉、黃燦輝、薛文城與黃中杰,「無機聚合物修補水泥砂漿裂縫之力學機制探討」,第八屆海峽兩岸隧道與地下工程學術與技術研討會,台北 (2009)。
2. 李宏輝,「砂岩力學行為之微觀機制-以個別元素法探討」,博士論文,國立台灣大學土木研究所,臺北(2008)。
3. 徐書政,「異向性岩石張力強度之研究」,碩士論文,國立成功大學資源工程研究所,臺南(2000)。
4. 蕭永成,「異向性大理岩之力學性質研究」,碩士論文,國立臺北科技大學材料及資源工程研究所,臺北(2000)。
5. Amadei, B., “Rock Anisotropy and the Theory of Stress Measurements,” Springer-Verlag, New York (1983).
6. Amadei, B., “Important of anisotropy when estimating and measuring in situ stress in rock,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 33, pp. 293-325 (1996).
7. Chen, C.S., Pan, E., and Amadei, B., “Determination of deformability and tensile strength of anisotropic rock using Brazilian tests,” International Journal of Rock Mechanics and Mining Sciences, Vol.35, No. 1, pp. 43-61 (1998).
8. Cho, J.W., Kim, H., Jeon, S., and Min, K.B., “Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist,” International Journal of Rock Mechanics & Mining Sciences, Vol. 50, pp.158-169 (2012).
9. Cho, N., Martin, C.D., Sego, D.C., “A clumped particle model for rock,” International Journal of Rock Mechanics & Mining Sciences, Vol.44, pp. 997-1010 (2007).
10. Claesson, J., and Bohloli, B., “Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution,” International Journal of Rock Mechanics & Mining Sciences, Vol. 39, pp. 991-1004 (2002).
11. Cundall, P.A. and Strack, O.D.L., “A discrete numerical model for granular assemblies,” Geotechnique, Vol. 29, pp. 47-65 (1979).
12. Dan, D.Q., Konietzky, H., and Herbst, M., “Brazilian tensile strength tests on some anisotropic rocks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 58, pp. 1-7 (2013).
13. Debecker, B., and Vervoort, A., “Experimental observation of fracture patterns in layered slate,” Int J Fract, Vol. 159, Issue 1, pp. 51-62 (2009).
14. Fakhimi, A., “Application of slightly overlapped circular particles assembly in numerical simulation of rocks with high friction angles,” Engineering Geology, Vol. 74, Issue 1-2, pp. 129-138 (2004).
15. Fairhurst, C., “On the valisity of the Brazilian test for brittle materials,” International Journal of Rock Mechanics & Mining Sciences, Vol. 1, pp. 535-546 (1964).
16. Feng, X.T., Pan, P.Z., and Zhou, H., “Simulation of the rock microfracturing process under uniaxial compression using an elasto-plastic cellular automaton,” International Journal of Rock Mechanics & Mining Sciences, Vol. 43, Issue 7, pp. 1091-1108 (2006).
17. Fowell, F.J, “Suggested method for determining mode I fracture toughness using Cracked Chevron Notched Brazilian Disc (CCNBD) specimens,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 32, No. 1, pp. 57-64 (1995).
18. Ghazvinian, A., Sarfarazi, V., Schubert, W., Blumel, M., “A study of the failure mechanism of planar non-persistent open joints using PFC2D,” Rock Mechanics and Rock Engineering, Vol. 45, Issue 5, pp. 677-693 (2012).
19. Goodman, R.E., “Introduction to Rock Mechanics,” 2nd edn. John Wiley, Singapore (1989).
20. Hondros, G., “The evaluation of Poisson’s ratio and modulus of materials of a low tensile resistance by Brazilian test with particular reference to concrete,” Journal of Applied Science, Vol. 10, pp. 243-268 (1959).
21. ISRM, “Suggested methods for determining tensile strength of rock materials,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 15 No. 3, pp. 99-103 (1978).
22. Itasca Consulting Group Inc., PFC2D (Particle flow code in 2 dimensions), Verson 4.0 (manual), Itasca Consulting Group Inc., Minneapolis, MN:ICG (2008).
23. Lekhnitskii, S.G., “Anisotropic plates,” Gordon and Breach Scientific Publications, New York (1968).
24. Liao, J.J., Yang, M.T., and Hsieh, H.Y., “Direct tensile behavior of a transversely isotropic rock,” In J Rock Mech. Min. Sci.,Vol. 34, No. 5, pp. 837-849 (1997).
25. Liu, W.C., Tien, Y.M., and Juang, C.H., “Numerical simulation for layered rock under Brazilian test,” 46th U.S. Rock Mechanics / Geomechanics Symposium, Chicago, USA, 24–27 June 2012 .Paper No. 12-492 (2012).
26. Liu, W.C., Tien, Y.M., Juang, C.H., and Lin, J. S., “Numerical investigation of crack propagation and failure mechanism of layered rocks,” 47th U.S. Rock Mechanics / Geomechanics Symposium, San Francisco, USA, 23–26 June 2013 .Paper No. 13-673 (2013).
27. Ma, G.W., Wang, X.J., and Ren, F., “Numerical simulation of compressive failure of heterogeneous rock-like materials using SPH method,” International Journal of Rock Mechanics & Mining Sciences, Vol. 48, Issue 3, pp. 353-363 (2011).
28. Mahabadi, O.K., Grasselli, G., and Munjiza, A., “Numerical modelling of a Brazilian disc test of layered rocks using the combine dfinite-discrete element method,” Proceedings of the 3rd CANUS Rock Mechanics Symposium, Toronto (2009).
29. Margielewski, W., “Structural control and types of movements of rock mass in anistropic rocks: Case studies in the Polish Flysch Carpathians.” Geomorphology, Vol. 77, pp. 47-68 (2006).
30. Mellor, M., Hawkes, I., “Measurement of tensile strength by diametral compression of discs and annuli,” Engineering Geology, Vol. 5, Issue 3, pp. 173-225 (1971).
31. Nakashima, S., Taguchi, K., Moritoshi, A., and Shimizu, N., “Loading conditions in the Brazilian test simulation by DEM,” 47th U.S. Rock Mechanics / Geomechanics Symposium, San Fransico, USA, 23–26 June 2013 .Paper No. 13-515 (2013).
32. National Geoscience Database of IRAN, 取自http://www.ngdir.ir/geolab/GeoLabExp.asp?PExpCode=7275&PID=2677 (2012).
33. Park, B., and Min, K. B., “Discrete element modelong of transversely isotropic rock,” 47th U.S. Rock Mechanics / Geomechanics Symposium, San Fransico, USA, 23–26 June 2013 .Paper No. 13-490 (2013).
34. Potyondy, D.O., and Cundall, P.A., “A bonded-particle model for rock,” International Journal of Rock Mechanics & Mining Sciences, Vol. 41, pp. 1329–1346 (2004).
35. Stefanizzi, S., Barla, G., and Kaiser,P.K., “Numerical modeling of rock mechanics tests in layered media using a finite/discrete element approach,” International Association for Computer Methods and Advances in Geomechanics, India (2008).
36. Tavallali, A., and Vervoort, A., “Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions,"International Journal of Rock Mechanics & Mining Sciences, Vol. 47, Issue 2, pp. 313-322 (2010a).
37. Tavallali, A., and Vervoort, A., “Failure of layered sandstone under Brazilian Test conditions: effect of micro-scale parameters on macro-scale behaviour," Rock Mech. Rock Eng. Vol. 43, pp. 641-653 (2010b).
38. Tien, Y.M., and Kuo, M.C., “A failure criterion for transversely isotropic rocks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 3, pp. 399-412 (2001).
39. Tien, Y.M., Kuo, M.C., and Juang, G.H., “An experimental investigation of the failure mechanism of simulated transversely isotropic rock,” In J Rock Mech. Min. Sci., Vol. 43, pp. 1163-1181 (2006).
40. Vutukuri, V.S., Lama, R.D., and Saluja, S. S., “Handbook on Mechanical Properties of Rocks,” Vol. I (1974).
41. Yanagidani, T., Sano, O, Terada, M., and Ito, I., “The observation of cracks propagating in diametrically-compressed rock disks,” Int J Rock Mech Min Sci Geomech Abstracts, Vol. 15, Issue 5, pp. 225-235 (1978).
42. Ye, J., Wu, F.Q., and Sun, J.Z., “Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads,” International Journal of Rock Mechanics & Mining Sciences, Vol. 46, Issue 3, pp. 568-576 (2009).
43. Yu, Y., Zhang, J., and Zhang, J., “A modified Brazilian disk tension test,” International Journal of Rock Mechanics & Mining Sciences, Vol. 46, pp. 421-425 (2009).
44. Zhu, W.C., and Tang, C.A., “Numerical simulation on of Brazilian disk rock failure under static and dynamic loading,” International Journal of Rock Mechanics & Mining Sciences, Vol. 43, Issue 2, pp. 236-252 (2006).
45. Zhong, X.P., and Wong, L. N. Y., “Loading rate effects on cracking behavior of flaw-contained specimens under uniaxial compression,” International Journal of Fracture, Vol. 180, pp. 93-110 (2013).
指導教授 田永銘(Yong-Ming Tien) 審核日期 2013-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明