博碩士論文 101322069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:35.172.233.2
姓名 顏郁航(Yu-hang Yan)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 雙限旅次分佈與交通量指派整合問題之研究-延伸性TAPAS演算法之應用
相關論文
★ 圖書館系統通閱移送書籍之車輛途程問題★ 起迄對旅行時間目標下高速公路匝道儀控之研究
★ 結合限制規劃法與螞蟻演算法求解運動排程問題★ 共同邊界資料包絡分析法在運輸業之應用-以國內航線之經營效率為例
★ 雙北市公車乘客知覺服務品質、知覺價值、滿意度、行為意向路線與乘客之跨層次中介效果與調節式中介效果★ Investigating the influential factors of public bicycle system and cyclist heterogeneity
★ A Mixed Integer Programming Formulation for the Three-Dimensional Unit Load Device Packing Problem★ 高速公路旅行時間預測之研究--函數資料分析之應用
★ Behavior Intention and its Influential Factors for Motorcycle Express Service★ Inferring transportation modes (bus or vehicle) from mobile phone data using support vector machine and deep neural network.
★ 混合羅吉特模型於運具選擇之應用-以中央大學到桃園高鐵站為例★ 含額外限制式動態用路人均衡模型之研究
★ 動態起迄旅次矩陣推估模型之研究★ 動態號誌時制控制模型求解演算法之研究
★ 不同決策變數下動態用路人均衡路徑選擇模型之研究★ 動態人口分布最佳化控制之研究-雙層規劃模型之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雙限旅次分佈係指在各起點之旅次產生總量與各迄點吸引總量皆同時固定的情況下,找出起迄需求量之分佈情形。交通量指派的輸入部份須使用旅次分佈計算所得的各起迄間之運輸需求量;而從事旅次分佈工作時,又必須利用交通量指派所得的各起迄點間之旅行成本,兩者關係環環相扣,利用整合模型可完全消除兩介面間不一致性的問題。
傳統求解雙限旅次分佈與交通量指派整合問題主要有直接演算法、雙階段演算法兩種。過去研究已指出求解雙限旅次分佈與交通量指派問題雙階段演算法優於直接演算法,但兩者皆仍存在不夠精確且無法獲得合理唯一路徑解之缺點。新近發展之交通量指派演算法多半可以達到所需的精確度,但對合理路徑流量唯一解課題未見深入探討,直到Bar-Gera (2010) 提出TAPAS演算法,融入流量比例原則之概念,在達到用路人均衡的情況下,所得解處於極大熵狀態,可得到合理的路徑流量唯一解。
本研究提出新的方法,利用Chen (2011) 延伸性之概念,將雙限旅次分佈與交通量指派整合問題轉換為延伸性交通量指派問題,概念簡淺易懂,並建構極大熵雙限整合模型以及雙限超級路網。以延伸性TAPAS演算法進行範例求解與驗證,研究結果發現延伸性求解概念,不僅精確度與運算效率皆優於傳統之雙階段演算法,善用TAPAS演算法特性,能夠突破以往整合模型無法獲得合理唯一路徑流量解之瓶頸。
摘要(英) The doubly constrained trip distribution problem is to find the O-D demands assuming that both the total flow generated at each origin and the total flow attracted to each destination are fixed and known. The input data of TD(trip distribution) and TA(traffic assignment) has to depend on each other. Using the concept of combined model can eliminate the inconsistency of two interfaces.
Traditionally, in order to solve the combined model, which the TD is considered along with TA, there are mainly two method: direct method and double-stage algorithm. Though the double-stage algorithm is much more accuracy and precise than the direct method in solving the combined model, they both still are not accuracy and precise enough in acquiring the unique route flow solution procedure, according to the past studies. Most of traffic assignment algorithm still couldn′t conquer multiple solutions problems, until Bar-Gera (2010) mentioned TAPAS algorithm, which add into the concept of proportionality and entropy.
Here is a new method presented in the article. We utilize the concept of extend network(Chen ,2011), and regard doubly constrained combined model as extend traffic assignment problem to construct the MEUE combined model and supernetwork. Using the extend TAPAS algorithm to solve it. The results indicate that the extend TAPAS algorithm is more efficient and has a better precision than the double-stage algorithm. Besides, we can breach the bottleneck to get the unique route flow solution for combined model.
關鍵字(中) ★ 雙限整合模型
★ 超級路網
★ 極大熵
★ TAPAS演算法
★ 雙階段演算法
關鍵字(英)
論文目次 摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 VII
表目錄 VIII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究範圍與假設 2
1.4 研究方法與流程 3
第二章 文獻回顧 6
2.1 用路人均衡模型演算法 6
2.1.1 Frank-Wolfe 演算法 6
2.1.2 梯度投影法 7
2.1.3 OBA 演算法 8
2.1.4 B 演算法 8
2.1.5 線性用路人成本均衡演算法 9
2.1.6 成對替選區段交通量指派演算法 10
2.1.7 演算法比較 11
2.2 旅次分佈與交通量指派整合模型 12
2.3 小結 16
第三章 雙限旅次分佈與交通量指派整合模型 20
3.1 模型使用符號說明 21
3.2 極大熵理論 23
3.3 流量比例原則 24
3.4 模型構建與最佳化條件 27
第四章 求解演算法 31
4.1 TAPAS演算法 32
4.1.1 找尋新的 PAS 32
4.1.2 PAS流量移轉 34
4.1.3 PAS調整流量比例 35
4.1.4 TAPAS演算法問題與討論 41
4.2 雙限延伸性交通量指派演算法求解步驟 44
第五章 範例測試分析 47
5.1 TAPAS演算法求解交通量指派範例 47
5.1.1 交通量指派範例輸入資料 47
5.1.2 交通量指派範例求解結果 48
5.2 TAPAS演算法求解整合雙限旅次分佈與交通量指派範例 56
5.2.1 整合雙限旅次分佈與交通量指派範例輸入資料 56
5.2.2 整合雙限旅次分佈與交通量指派範例求解結果 57
第六章 結論與建議 67
6.1 結論 67
6.2 建議 69
參考文獻 70
參考文獻 [1] 王中允,「路段容量限制動態用路人旅運選擇模型之研究」,國立中央大學土木工程學系,博士論文,1999。
[2] 李宗益,「含額外限制式動態用路人均衡模型之研究」,國立中央大學土木工程學系,碩士論文,1999。
[3] Boyce, D.E., 陳惠國,「運輸系統規劃與評估技術講習課程-如何提高運輸需求預測的精確度」,國立交通大學台北校區,台北,2007。
[4] 陳惠國、陳穎俊,「雙邊限制之旅次分佈與交通量指派模型求解效率之比較」, 中華民國運輸學會第十三屆學術論文研討會,頁721-730,新竹,1998。
[5] 陳惠國、王宣,「多商品流問題求解演算法之課題探討」,中華民國運輸學會98年學術論文研討會,桃園,2009。
[6] 陳惠國、吳宗昀,「TAPAS 交通量指派演算法之發展」,中華民國運輸學會99年學術論文研討會,台中,2010。
[7] 陳惠國、陳文婷,「運輸需求預測整合模型統合架構之探討」,中華民國運輸學會99年學術論文研討會,台中,2010。
[8] 陳惠國,「線性用路人成本均衡(LUCE)演算法之介紹」,中華民國運輸學會100年學術論文研討會,新竹,2011。
[9] 陳惠國、王中允、嚴國基,「B演算法應用於彈性需求整合模型之研究」,運輸學刊,第二十五卷,第三期,頁371-398,2013。
[10] 陳惠國,「運輸規劃與網路」,滄海書局,台中市,2009。
[11] 陳育正,「靜態路網均衡指派模型求解演算法之比較研究」,國立中央大學土木工程學系,碩士論文,1995。
[12] 陳穎俊,「動態用路人均衡雙邊限制模型之研究」,國立中央大學土木工程學系,碩士論文,1999。
[13] 陳文婷,「運輸需求整合模型統合架構之探討」,國立中央大學土木工程學系,碩士論文,2010。
[14] 張天然,「改進的交通分配起點用戶均衡演算法」,上海交通大學學報,第四十五卷,第四期,頁510-516,2011。
[15] 彭曉琪,「動態用路人均衡雙邊限制起迄/出發時間/路徑選擇雙層模型之研究」,國立中央大學土木工程學系,碩士論文,2001。
[16] 曾瓊玉,「路網容量信賴度之研究」,國立中央大學土木工程學系,碩士論文,2002。
[17] 郭永慧,「旅次分佈與交通量指派整合模式應用於災害疏散救援與緊急路網重建之研究」,國防大學國防管理學院決策科學研究所,碩士論文,2004。
[18] 莊英鴻,「先進先出動態旅行時間函數以及起點基礎之交通量指派演算法之研究」,國立中央大學土木工程學系,碩士論文,2006。
[19] Bar-Gera, H. and D. Boyce., “Route Flow Entropy Maximization in Origin-Based Assignment”, Transportation and Traffic Theory, Proceedings of the 14th International Symposium on Transportation and Traffic Theory, Elsevier Science, Oxford, UK, pp. 397-415, 1999.
[20] Bar-Gera, H., “Origin-Based Algorithm for the Traffic Assignment Problem”, Transportation Science, Vol. 36, No. 4, pp. 398-417, 2002.
[21] Bar-Gera, H. and D. Boyce, “Origin-Based Algorithms for Combined Travel Forecasting Models”, Transportation Research, Vol. 37B, pp. 405-422, 2003.
[22] Bar-Gera, H., “Primal Method for Determining the Most Likely Route Flows in Large Road Networks”, Transportation Science, Vol. 40, No. 3, pp. 269-286, 2006.
[23] Bar-Gera, H., “Traffic Assignment by Paired Alternative Segments”, Transportation Research, Part B, Vol. 44, pp. 1022-1046, 2010.
[24] Beckmann, M, C.B. McGuire, and C.B. Winsten, “Studies in the Economics of Transportation”, Yale University Press, New Haven, 1956.
[25] Bell, M. & Y. Iida, “Transportation Network Analysis”, Wiley, New York, 1997.
[26] Boltzmann, L., “Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respecktive den Sätzen über das Wärmegleichgewicht (On the relationship between the second law of the mechanical theory of heat and the probability calculus)”, Vol. 2, No. 76, pp. 373–435, Wiener Berichte, 1877.
[27] Boyce, D.E., & H. Bar-Gera, “Validation of Multiclass Urban Travel Forecasting Models Combining Origin-Destination, Mode, and Route Choices”, Journal of Regional Science, Vol. 43, pp. 517-540, 2003.
[28] Chen, H.K., & Y.C. Chen, “Comparisons of the Frank-Wolfe and Evans Methods for the Doubly Constrained Entropy Distribution/Assignment Problem”, Journal of the Eastern Asia Society for Transportation Studies, Vol. 3, No. 5, pp. 261-276, 1999.
[29] Chen, H.K., “Dynamic Travel Choice Models: A Variational Inequality Approach”, Springer-Verlag, Berlin, 1999
[30] Chen, H.K., “Supernetworks for Combined Travel Choice Models”, The Open Transportation Journal, Vol. 5, pp. 92-104, 2011.
[31] Chen, H.K., “A Combined Model with the Four Travel Choices and Variable Demand,” International Academic Conference on Social Sciences (IACSS), Istanbul, Turkey, pp. 324-333, 2013.
[32] Dial, R.B., “A Probabilistic Multipath Traffic Assignment Algorithm which Obviates Path Enumeration”, Transportation Research, Vol. 5, No. 2, pp. 83-111, 1971.
[33] Dial, R.B., “A Path-Based User-Equilibrium Traffic Assignment Algorithm that Obviates Path Storage and Enumeration”, Transportation Research Part B, Vol. 40, pp. 917-936, 2006.
[34] Evans, S.P., “A Relationship between the Gravity Model for Trip Distribution and the Transportation Problem in Linear Programming”, Transportation Research, Vol. 7, pp. 39-61, 1973.
[35] Evans, S.P., “Derivation and Analysis of Some Model for Combining Trip Distribution and Assignment”, Transportation Research, Vol. 10, pp. 37-57, 1976.
[36] Florian, M., I. Constantin, and D. Florian, “A New Look at the Projected Gradient Method for Equilibrium Assignment”, TRB 2009 Annual Meeting CD-ROM, Paper #09-0852, 2009.
[37] Frank, M. and P. Wolfe, “An Algorithm for Quadratic Programming”, Naval Research Logistics Quarterly, Vol. 3, No. 1-2, pp. 95-110, 1956.
[38] Gentile, G., “Linear User Cost Equilibrium: A New Algorithm for Traffic Assignment”, Submitted to Transportation Research Part B, 2009.
[39] Jayakrishnan, R., Tsai, W.K., Prashker, J.N. and Rajadhyaksha, S., “A Faster Path-Based Algorithm for Traffic Assignment”, Presented at the Transportation Research Board 73rd Annual Meeting, Washington, D.C., U.S.A, 1994.
[40] Lam, W.H.K. and H.J. Huang, “A Combined Trip Distribution and Assignment Model for Multiple User Classes”, Transportation Research, Vol. 26B, No. 4, pp. 275-287, 1992.
[41] Lam, W.H.K. and H.J. Huang, “Calibration of the Combined Trip Distribution and Assignment Model for Multiple User Classes”, Transportation Research, Vol. 26B, No. 4, pp. 289-305, 1992.
[42] Larsson, T., Yuan, D., “An Augmented Lagrangian Algorithm for Large Scale Multicommodity Routing,” Computational Optimization and Applications, Vol. 27, pp. 187-215, 2004.
[43] Murchland, J.D., “Some Remarks on the Gravity Model of Traffic Distribution and an Equivalent Maximization Formulation”, LSE-TNT-38, Transport Network Theory Unit, London School of Economics, London, 1966.
[44] Rossi, T.F., S. McNeil, and C. Hendrickson, “Entropy Model for Consistent Impact Fee Assessment”, Journal of Urban Planning and Development, ASCE, Vol. 115, No. 2, pp. 51-63, 1989.
[45] Shannon, C. and W. Weaver, “A Mathematical Theory of Communication”, University of Illinois Press, 1948.
[46] Sheffi, Y., “Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods”, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1985.
[47] Tomlin, J.A., “Mathematical Programming Model for the Combined Distribution-Assignment of Traffic”, Transportation Science, Vol. 5, pp. 22-140, 1971.
[48] Wardrop, J. G. “Some Theoretical Aspects of Road Traffic Research”, Proceedings, Institution of Civil Engineers, Part II, 1, pp. 325-378, 1952.
[49] Xu, M., A. Chen, & Z. Gao, “An Improved Origin-based Algorithm for Solving the Combined Distribution and Assignment Problem”, European Journal of Operational research, Vol. 188, pp. 354-369, 2008.
[50] Xie, J., Y. Nie, & X. Yang, “Quadratic Approximation and Convergence of Some Bush-Based Algorithms for the Traffic Assignment Problem”, Transportation Research Part B, Vol. 56, pp. 15-30, 2013.
[51] Zargari, S.A., M. Araghi, & K. Mohammadian, “An Application of Combined Model for Tehran Metropolitan Area Incorporating Captive Travel Behavior”, American Journal of Applied Sciences, Vol. 6, pp. 64-71, 2009.
指導教授 陳惠國 審核日期 2014-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明