博碩士論文 101323013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:44.210.21.70
姓名 劉姝妤(Shu-yu Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 低頻振動能量擷取器之設計
相關論文
★ 雙頻帶微型電磁式發電機之研製★ 經驗模態分解法之清醒與麻醉情形下的腦波特徵判別
★ CMOS-MEMS電容式加速度計之設計與製作★ 銅電鍍製程於微小結構製作之應用
★ 平面雙軸式磁通閘之分析與應用★ 聲波聚焦噴墨搭配菲涅爾透鏡之設計
★ 微粒子於溶液中操控之模擬★ 應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理
★ 平面雙軸式磁通閘之製作與改良★ 單一自由度微型電熱鑷子之設計與分析
★ 加工液濁度檢測器之設計★ Underwater Position Control of Particles
★ 立體微型振動發電機之研製★ 三維導電微成型技術開發應用於微機電系統之研究
★ 用於電火花加工的油質感測器★ 油液污濁度檢測器之設計與改良
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文主要設計一低頻電磁式發電機,利用磁鐵與鎳膠之影響,來達到降低共振頻之效果。首先利用半導體製程技術在矽晶圓上製作一 7 mm * 7 mm * 0.2 mm 懸臂樑,利用光罩補償之設計,於懸臂樑前方留下重物,接著在懸臂樑上方點製作出五圈之線圈,在重物下方點上一層鎳膠。

從模擬結果中可得知,磁鐵四周磁場較強,因此將元件放置於銣鐵硼強力磁鐵邊緣,利用線圈在受到外部振動後與磁鐵所產生之磁場,產生感應電動勢達到發電之效果。

在量測元件後發現,於磁鐵邊長上方 2 mm 處,量測結果得知共振頻由 170 Hz 降至 157 Hz,電壓則由 172 mV 提升至 212 mV,也發現鎳膠擺放位置之不同,對懸臂樑發電會造成頻寬增加 20.65 Hz,發電量由 198 mV 降至 128 mV,共振頻下降 40 Hz 之結果,可得知懸臂樑之共振頻會隨相吸力增強而下降。

摘要(英) In this paper, a low-frequency electromagnetic generator is designed and fabricated by using a nickel layer to adjust its resonant frequency. Firstly, we used semiconductor process to produce a 7 mm * 7 mm * 0.2 mm cantilever on the silicon wafer and then used the compensation of the mask design to design the proof mass. Finally, five turns of the coils are produced on the cantilever and glued nickel layer on the bottom.

From the simulation results, the magnet is surrounded by a strong magnetic field, so the element is placed on the edge of NdFeB magnets. We found that when the device is located 2 mm above the magnet, the resonant frequency was dropped from 170 Hz to 157 Hz, and the voltage was increased from 172 Hz mV to 212 mV. We also found that the placements of different nickel for cantilever generation will cause the bandwidth increased by 20.65 Hz, voltage down from 198 mV to 128 mV, the resonance frequency decreased by 40 Hz due to the repulsion force.
關鍵字(中) ★ 振動發電
★ 共振頻改變
★ 電磁式發電
關鍵字(英)
論文目次 目錄

摘要 i

Abstract ii

誌謝 iii

第一章 緒論 - 1 -

1.1 前言 - 1 -

1.2 研究動機與目的 - 2 -

1.3 文獻回顧 - 4 -

1.4 論文架構 - 9 -

第二章 基礎理論 10

2.1 冷次定律與法拉第電磁感應 10

2.1.1 冷次定律 10

2.1.2 法拉第電磁感應 11

2.2 振動發電原理 11

2.3 磁力與共振頻 15

第三章 元件製作 17

3.1 製程原理 17

3.2 微加工技術 17

3.2.1 表面加工(Surface Micromachining) 17

3.2.2 體加工(Bulk Micromachining) 18

3.2.3 矽結構蝕刻缺陷 19

3.2.4 各種補償方式及其原理 21

3.3 元件製作流程 24

3.3.1 製作流程 24

3.3.2 曝光顯影 26

3.3.3 釋放懸臂樑 28

3.3.4 線圈製作 30

3.3.5 鎳膠層製作 30

3.4 磁場模擬 31

3.5 懸臂樑模態分析 49

第四章 元件量測與討論 54

第五章 結論 67

參考文獻 …………………...……………...…...………………...………........68



參考文獻 [1] S. Chalasani, J.M. Conrad, “A Survey of Energy Harvesting Sources for Embedded Systems”, Electrical and Computer Engineering, University of North Carolina at Charlotte, IEEE, 2008

[2] M. El-Hami, P. Glynne-Jones, E. James, S.P. Beeby, N.M. White, A.D. Brown, J.N. Ross and M. Hill, “Design and fabrication of a new vibration-based electromechanical power generator” Sensors & Actuators , 2001, v.92, pp.335–344.

[3] S.P. Beeby, M.J.Tudor and N.M. White, “Energy harvesting vibration sources for microsystems applications ” Measurement Science and Technology, Received 3 March 2005

[4] C.B. Williams, C. Shearwood, M.A. Harradine, P.H. Mellor, T.S. Birch and R.B. Yates, “Development of an electromagnetic micro-generator” IEE Proc. -Circuits Devices Syst, December 2001, Vol.148, No.6

[5] A. Pérez-Rodríguez, C. Serrea, N. Fondevilla, J.R. Morante, J. Montserrat, J.Esteve “Electromagnetic Inertial Generator For Vibrational Energy Scavenging Compatible With Si Technology” Power MEMS, 2005

[6] A. Pérez-Rodríguez, C. Serrea, N. Fondevilla, E. Martincic, J.R. Morante, J. Montserrat, and J. Esteve ”Linear and Non Linear Behavior of Mechanical Resonators for Optimized Inertial Electromagnetic Microgenerators” DTIP of MEMS & MOEMS, 9-11 April 2008

[7] I. Sari, T. Balkan, H. Kulah “An electromagnetic micro energy harve-ster based on an array of parylene cantilevers” Micromechanics and Microengineering

[8] http://elearn.gdjh.tc.edu.tw/

[9] C.B. Williams, R.B. Yates, “Analysis of a micro-electric generator for microsystems” Sensors and Actuators, 8-11 1996

[10] V.R. Challa, M.G. Prasad, Y. Shi and F.T. Fisher, “A vibration energy harvesting device with bidirectional resonance frequency tunability” Smart Mater Struct. 2008

[11] http://wenku.baidu.com/

[12] B. Kim and D. D. Cho, “Aqueous KOH Etching of Silicon (110) Etch Characteristics and Compensation Methods for Convex Corners” J. Elect rochem. Soc., Vol. 145, No. 7, July 1998

[13] Z. Han, L. Weihua” A novel method for generating a rectangular convex corner compensation structure in an anisotropic etching process” Journal of Semiconductors, Vol. 30, No. 7, July 2009

[14] 林宜良, 林煌堯, 余志成”化學蝕刻高深寬比凸角矽結構光罩補償圖形設計”第三屆機密機械製造研討會論文集, 十一月十五日 中華民國九十二年

[15] Q. Zhang, L. Liu, Z. Li “A new approach to convex comer compensation for anisotropic etching of (100) Si in KOH” Sensors and Actuators, A 56 ,1996 251-254

[16] 黃鐘加, 余志成, “RIE蝕刻矽與氮化矽之參數分析” 南區微機電中心機台操作參數設定專題成果報告, 民國九十二年四月

[17] M. V. Gelfuso, D. Thomazini, J. C. Silva de Souza, J. J. de Lima Junior “Vibrational Analysis of Coconut Fiber-PP Composites” Materials Research., 2014

指導教授 陳世叡 審核日期 2015-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明