博碩士論文 101323015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:34.239.179.228
姓名 郭書瑋(Shu-Wei Guo)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 MOCVD旋轉載台結構應力與晶圓翹曲分析
(Analysis of Structural Stress in Susceptor and Warpage of Film-Substrate Systems for an MOCVD Reactor)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的在透過有限元素分析(FEM),計算一有機金屬氣相沉積(MOCVD)反應腔體之旋轉載台在製程時受到高溫熱負載及不同轉速作用時的應力分佈與變形。考慮的負荷條件分別為無轉速只受溫度負載之狀態,以及主軸轉速10 rpm、100 rpm、500 rpm、1000 rpm、1500 rpm之情況。另外,本研究亦以系統化觀點考慮整個旋轉載台的溫度分布對氮化鎵薄膜磊晶翹曲及薄膜殘留應力的影響。此外,本研究亦以簡易模型分析不同晶圓直徑與材料、不同薄膜與晶圓厚度、加入緩衝層與否及溫度梯度對於晶圓翹曲及氮化鎵薄膜殘留應力的影響。為驗證本研究所建立有限元素分析模型之有效性,將模擬結果與前人以不同厚度氮化鎵磊晶在藍寶石晶圓量測實驗結果作比對,模擬結果之晶圓翹曲及晶圓曲率半徑改變趨勢和實驗結果一致,證實本研究所建立模型之有效性,可適用於評估各種磊晶參數對於晶圓翹曲及薄膜殘留應力的影響。
旋轉載台結構應力分析結果顯示此旋轉載台在同時受到溫度負載及各轉速的作用下,各個組件將不會有永久變形之情形發生。此外,轉速的提升對於結構應力的影響很小。溫度分布分析結果顯示,在同一個穩定的熱源條件下,以藍寶石晶圓磊晶氮化鎵薄膜的製程,旋轉載台上半部零件包含主承載盤、晶圓承載盤及晶圓,其溫度高於以矽晶圓磊晶的製程,且前者上半部零件溫度梯度皆小於後者。研究結果顯示有溫度梯度將增加晶圓翹曲及薄膜殘留應力,所以溫度均勻性對於磊晶製程是一重要參數。此外,氮化鎵薄膜磊晶於藍寶石晶圓,其薄膜殘留應力為壓應力,而磊晶於矽晶圓,其殘留應力為張應力;以裂縫生成的觀點來看,氮化鎵薄膜磊晶於藍寶石晶圓優於矽晶圓。
薄膜磊晶分析結果顯示不論磊晶於藍寶石晶圓或矽晶圓,增加磊晶薄膜厚度,晶圓翹曲量亦會增加,但薄膜殘留應力下降。增加晶圓厚度能有效的減少晶圓翹曲量,亦是業界常用的方法之一,但薄膜殘留應力會上升。考慮同厚度的晶圓,晶圓直徑的增大會造成翹曲量增加,甚至超越其本身厚度,此為大尺寸薄膜磊晶的一大挑戰,因此實務上直徑越大的晶圓將搭配越厚的晶圓以減緩翹曲。模擬結果顯示於薄膜及晶圓間添加緩衝層能夠降低薄膜殘留應力,且降低的程度隨著緩衝層厚度的增加而提升,因此,薄膜的可靠性可以透過加入緩衝層來改善。
摘要(英) The aim of this work is using finite element analysis (FEM) to study the effects of thermal load and rotation speed on the structural integrity of a substrate holder module in an MOCVD reaction chamber. Several loading conditions are considered, including thermal load alone and thermal load plus rotation speeds of 10 rpm, 100 rpm, 500 rpm, 1000 rpm, and 1500 rpm. In addition, the wafer bow and residual stress of GaN growth on silicon or sapphire are systematically studied for various scenarios. The effects of size and material of wafer, thickness of film and substrate, buffer layer, and temperature gradient are characterized. Moreover, in order to validate the FEM model constructed in the current study, experimental results of a previous study are applied to assessing the credibility of the numerical methods by comparison of the simulation results with the experimental measurements of wafer bow. The variation trends of wafer bow and curvature radius in simulation agree well with those in experiment such that the constructed model is validated. Therefore, the constructed model is effective in assessing the effect of various parameters acting on a film-substrate system.
As the calculated critical stress is less than the strength of material, no structural failure is predicted for all the components in the given substrate holder module under all of the given loading conditions. The variation of critical stress with rotation speed in all of the components is small. Given a similar heat source in the MOCVD reaction chamber, temperature of the upper components such as susceptor, substrate holders, and wafers is higher in the case of sapphire wafer than that in the case of silicon wafer. The temperature gradient of upper components is greater for the silicon wafer case. A greater temperature gradient in the film-substrate system generates a greater wafer bow and residual stress. Therefore, the temperature uniformity is an important parameter for the epitaxial process. The sign of residual stress is different between a GaN film grown on a sapphire wafer and a silicon wafer (compressive for sapphire wafer and tensile for silicon wafer). For growing a GaN thin film, GaN thin film, sapphire wafer is better than silicon wafer in terms of lessening cracking in film.
No matter GaN is grown on sapphire wafer or silicon wafer, wafer bow increases and residual stress in the film decreases with an increase in thickness of film. Increasing the thickness of wafer can effectively reduce wafer bow, which is also a method commonly used in industry, but the residual stress in the film is increased. Given a wafer thickness, the size of bow is increased with wafer diameter, which is one of the major challenges in growth of a large-size epitaxial wafer. The magnitude of residual stress in a thin film can be reduced when a thick buffer layer is added between film and wafer. For a lower residual stress, the reliability of a thin film can be improved by the addition of buffer layer.
關鍵字(中) ★ 有機金屬化學氣相沉積
★ 晶圓翹曲
關鍵字(英) ★ MOCVD
★ Wafer bow
論文目次 LIST OF TABLES VIII
LIST OF FIGURES X
1. INTRODUCTION 1
1.1 MOCVD 1
1.1.1 Principles of MOCVD process 1
1.1.2 MOCVD reactor components 2
1.1.3 Wafer 6
1.2 Literature Review 8
1.3 Purpose 10
2. MODELING 13
2.1 Modeling for Structural Analysis 13
2.1.1 Finite element model and material properties 13
2.1.2 Loading and boundary conditions 14
2.2 Modeling for Wafer Bow 16
2.2.1 Finite element model 16
2.2.2 Element birth and death 17
2.2.3 Validation of numerical model 18
3. Results and Discussion 20
3.1 Structural Stress 20
3.2 Wafer Bow 22
3.2.1 Comparison between sapphire and silicon substrate 22
3.2.2 Effect of thickness of film 26
3.2.3 Effect of thickness of Wafer 27
3.2.4 Effect of buffer layer 29
3.2.5 Effect of initial bow of wafer 30
4. CONCLUSIONS 32
REFERENCES 34
TABLES 37
FIGURES 49
參考文獻 1. Metalorganic Vapor Phase Epitaxy, Wikipedia, http://en.wikipedia.org/wiki/Metalorganic_vapour_phase_epitaxy, accessed on February 7, 2014.
2. M. Razeghi, The MOCVD Challenge, Volume 2: A Survey of GaInAsP-GaAs for Photonic and Electronic Device Applications, Taylor & Francis, London, UK, 1995.
3. A. K. Georgieva, U. Forsberg, I. G. Ivanov, and E. Janzen, “Uniform Hot-Wall MOCVD Epitaxial Growth of 2 Inch AlGaN/GaN HEMT Structures,” Journal of Crystal Growth, Vol. 300, pp. 100-103, 2007.
4. N. Kaneno, H. Kizuki, M. Takemi, and K. Mori, “Substrate Holder for MOCVD,” U.S. Patent, No. 5,782,979, June 13, 1995.
5. H. Jurgensen, J. Kappeler, S. Johannes, and G. K. Strauch, “CVD Coating Device,” U.S. Patent, No. 7,067,012, March 3, 2003.
6. H. R. Alaei, H. Eshghi, R. Riedel, and D. Pavlidis, “Thermal Stress and Strain in a GaN Epitaxial Layer Grown on a Sapphire Substrate by the MOCVD Method,” Chinese Journal of Physics, Vol. 48, pp. 400-407, 2010.
7. M. C. Liu, H. C. Pei, J. L. Yu, C. M. Chen, S. C. Liu, C. Y. Yu, and C. S. Tsai, “Structure and Method to Reduce Wafer Warp for Gallium Nitride on Silicon Wafer,” U.S. Patent, No. 8,629,531, January 14, 2014.
8. A. Dadgar, C. Hums, A. Diez, J. Blasing, and A. Krost, “Growth of Blue GaN LED Structures on 150-mm Si(1 1 1),” Journal of Crystal Growth, Vol. 297, pp. 279-282, 2006.
9. T. Li, M. Mastro, and A. Dadgar, III–V Compound Semiconductors: Integration with Silicon-Based Microelectronics, CRC Press, Boca Raton, FL, USA, 2010.
10. S. Luryi, J. Xu, and A. Zaslavsky, Future Trends in Microelectronics: Frontiers and Innovations, John Wiley & Sons, Hoboken, NJ, USA, 2013.
11. H. Aida, D. S. Lee1, M. Belousov1, and K. Sunakawa, “Effect of Initial Bow of Sapphire Substrate on Substrate Curvature During InGaN Growth Stage of Light Emitting Diode Epitaxy,” Japanese Journal of Applied Physics, Vol. 51, pp. 1-6, 2012.
12. L. Frank, L. Dong, B. Dan, A. Eric, and Q. William, “Blue LED Growth from 2 Inch to 8 Inch,” Science China Technological Sciences, Vol. 54, pp. 33-37, 2011.
13. T. L. Chou, S. Y. Yang, and K. N. Chiang, “Overview and Applicability of Residual Stress Estimation of Film–Substrate Structure,” Thin Solid Films, Vol. 519, pp. 7883-7894, 2011.
14. C. Wei and J. F. Yang, “A Finite Element Analysis of the Effects of Residual Stress, Substrate Roughness and Non-Uniform Stress Distribution on the Mechanical Properties of Diamond-Like Carbon Films,” Diamond and Related Materials, Vol. 20, pp. 839-844, 2011.
15. L. Wang, Y. Wang, X. G. Sun, J. Q. He, Z. Y. Pan, and C. H. Wang, “Finite Element Simulation of Residual Stress of Double-Ceramic-Layer La2Zr2O7/8YSZ Thermal Barrier Coatings Using Birth and Death Element Technique,” Computational Materials Science, Vol. 53, pp. 117-127, 2012.
16. A. Pramanik and L. C. Zhang, “Residual Stresses in Silicon-on-Sapphire Thin Film Systems,” International Journal of Solids and Structures, Vol. 48, pp. 1290-1300, 2011.
17. S. Widjaja, A. M. Limarga1, and T. H. Yip, “Modeling of Residual Stresses in a Plasma-Sprayed Zirconia/Alumina Functionally Graded-Thermal Barrier Coating,” Thin Solid Films, Vol. 434, pp. 216-227, 2003.
18. W. Luo, X. Wang, L. Guo, H. Xiao, C. Wang, J. Ran, J. Li, and J. Li, “Influence of AlN Buffer Layer Thickness on the Properties of GaN Epilayer on Si(1 1 1) by MOCVD,” Microelectronics Journal, Vol. 39, pp. 1710-1713, 2008.
19. Carbon - Graphite Materials, Azom, http://www.azom.com/properties.aspx?ArticleID=516, accessed on May 27, 2014.
20. Crystalline (Alpha) Quartz, MakeItFrom, http://www.makeitfrom.com/material-data/?for=Crystalline-Alpha-Quartz, accessed on June 1, 2014.
21. D. Strauch, Landolt-Börnstein - Group III Condensed Matter, Springer, Berlin, Germany, 2011.
22. Aluminum Nitride, AIN Ceramic Properties, ACCURATUS, http://accuratus.com/alumni.html, accessed on March 24, 2014.
23. Sapphire (Al2O3), MaTeck, http://www.mateck.de/index.php?option=com_content&view=article&id=66&Itemid=21, accessed on May 19, 2014.
24. Silicon, INSACO, http://www.insaco.com/materials/other-materials/silicon, accessed on January 9, 2014.
25. Molybdenum, MatWeb, http://www.matweb.com/search/DataSheet.aspx?MatGUID=ef57c33963404798ad0301a05692312a&ckck=1, accessed on January 6, 2014.
26. 316 Stainless Steel, Annealed Sheet, MatWeb, http://www.matweb.com/search/DataSheet.aspx?MatGUID=50f320bd1daf4fa7965448c30d3114ad, accessed on January 5, 2014.
27. Quartz, MatWeb, http://www.matweb.com/search/DataSheet.aspx?MatGUID=ffccd1bca743445ca3bc170 6a52974dd, accessed on January 6, 2014.
28. G. A. Slack and S. F. Bartram, “Thermal Expansion of Some Diamondlike Crystals,” Journal of Applied Physics, Vol. 46, pp. 89-95, 1975.
29. T. Vodenitcharova, L.C. Zhang, I. Zarudi, Y. Yin, H. Domyo, T. Ho, and M. Sato, “The Effect of Anisotropy on the Deformation and Dracture of Sapphire Wafers Subjected to Thermal Shocks,” Journal of Materials Processing Technology, Vol. 194, pp. 52-62, 2007.
30. A. Erdemir and J. M. Martin, Superlubricity, Elsevier, Kidlington, UK, 2007.
31. C. H. Lee and S. H. Kong, “Gallium Nitride Thin Film on Sapphire Substrate Having Reduced Bending Deformation,” U.S. Patent, No. 7,592,629, April 19, 2007.
32. Biot Number, Wikipedia, http://en.wikipedia.org/wiki/Biot_number, accessed on July 20, 2014.
33. B. Leroy and C. Plougonven, “Warpage of Silicon Wafers,” Journal of the Electrochemical Society, Vol. 127, pp. 961-970, 1980.
34. J. J. Huang, H. C. Kuo, and S. C. Shen, Nitride Semiconductor Light-Emitting Diodes (LEDs), Woodhead Publishing, Cambridge, UK, 2013.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2014-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明