博碩士論文 101323024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:34.237.51.35
姓名 盧詰茗(Jie-ming Lu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 雙光子光致聚合微製造以弦高誤差為基之切層演算法
(Slicing Algorithm Base on Cusp Height for Two-photon Photopolymerization Micro-fabrication)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究★ 雙光子聚合微製造技術之三維結構 製造品質改進研究
★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進★ 組織工程用冷凍成型製造系統 之自動化製作流程開發
★ 自動相機校正與二維影像輪廓萃取研究★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究
★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合
★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究
★ 聚醚醚酮之積層製造系統開發★ 基於雙光子聚合技術之長軸成形法製造高深寬比結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雙光子光致聚合(Two-Photon Photopolymerization, TPP)微製造技術是一種可以製造高精度的任意三維(Three-Dimensional, 3D)微/奈米結構的製造技術,而其加工方式類似於積層製造,是由一層層堆疊加工的方式來製造微結構。隨著科技的進步,科技產品也越趨向越做越小,微加工的製造技術漸漸成為主要發展對象。TPP微製造技術也因此受到矚目。
為了能以TPP微製造技術製造高精度微結構,本論文應用傳統使用於CNC切削加工的弦高誤差(Cusp Height)分析,發展一套以弦高誤差為基之雷射掃描路徑規劃法。其特色是以SolidWorks為幾何核心,其微結構之CAD模型並沒有經過三角網格化的步驟,因此能保留較完整的表面曲面特徵。此外,本論文利用VBA(Visual Basic Application)語法所撰寫的SolidWorks API(Application Programming Interface)程式和體素結合弦高誤差演算法,進行雷射掃描路徑規劃,最後並以數個範例驗證演算法的正確性。
摘要(英) Two-photon photopolymerization is a micro-fabrication technology that can produce an arbitrary three-dimensional high precision micro/nanostructure, and its process is a manner similar to Additive Manufacturing, its also by stacking layers of voxcel to produce the structure. As technology advances, the more technology products tend to get smaller, micro-machining manufacturing techniques gradually become main objective. TPP micro-fabrication techniques, therefore, receive much attention.
To be able to produce precise micro-structure with TPP micro-fabrication technology ,The paper applied traditional use in CNC machining Cusp Height analysis, developing a on cusp height of laser scanning path planning method based. Its characteristic is used the core of SolidWorks geometry. Its micro-structure’s CAD model is generated without steps of the triangular grid. Therefore, Its able to remain more complete curved surface features. In addition, The paper uses VBA (Visual Basic Application)grammar to write Solidworks API (Application Programming Interface) program and Cusp Height algorithm to performed laser scanning path planning, and make some example to verify the algorithm in the end.
關鍵字(中) ★ 雙光子光致聚合
★ 弦高誤差
★ SolidWorks API
關鍵字(英) ★ TPP
★ Cusp Height
★ SolidWorks API
論文目次 摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VIII
符號說明 IX
第一章 緒論 1
1-1前言 1
1-2文獻回顧 4
1-3研究動機與目的 10
1-4論文架構 11
第二章 理論說明 12
2-1雙光子光致聚合反應 12
2-2雙光子光致聚合微製造技術與Voxel 14
2-3弦高誤差 18
第三章 研究方法 20
3-1 Voxel之弦高誤差切層演算法推論導算 20
3-2 SolidWorks API簡介 30
3-3以SolidWorks API發展弦高誤差切層演算法 38
3-4以SolidWorks API進行視覺化成果展示 44
第四章 實驗結果與討論 46
4-1半圓形物體之切層模擬 46
4-2半橢圓形物體之切層模擬 49
4-3四角錐物體之切層模擬 50
4-4六角柱物體之切層模擬 51
4-5 C60結構體之切層模擬 53
第五章 結論與未來展望 55
5-1結論 55
5-2未來展望 55
參考文獻 56
參考文獻 [1]潘恩亞、蒲念文、董玉平與游漢輝,「雙光子吸收光致聚合技術應用於微元件製作之研究」,中正嶺學報,34卷,1-16頁,2005。
[2]Andreas, O., Boris, N., and Laser Zentrum Hannover eV, “Two-Photon Polymerization: A New Approach to Micromachining”,2006.
[3]Kumi, G., Yanez, C. O., Belfield, K. D., and Fourkas, J. T., “High-SpeedMultiphoton Absorption Polymerization: Fabrication of Microfluidic Channelswith Arbitrary Cross-Sections and High Aspect Ratios”, Lab on a Chip, Vol.10,pp.1057-1060, 2010.
[4]Zhang, Y. L., Chen, Q. D., Xia, H., and Sun, H. B., “Designable 3DNanofabrication by Femtosecond Laser Direct Writing”, Nano Todprocessay,Vol.5, pp.435-448, 2010.
[5]Wu, D., Wu, S. Z., Niu, L. G., Chen, Q. D., Wang, R., Song, J. F., Fang, H. H.,and Sun, H. B., “High Numerical Aperture Microlens Arrays of Close Packing”,Applied Physics Letters, Vol.97, No. 3, pp. 031109, 2010.
[6]Byung, J. J., Hong, J. K., Cho, Y. H., Lee, K. S, Chung, H. P., Yang, D. Y., andLee K. S. “Fabrication of Sharp-needled conical polymer tip on thecross-section of optical fiber via two-photon polymerization fortuning-fork-based atomic force microscopy”, Journal of OpticsCommunications, Vol.286, pp. 197-203, 2013.
[7]Engelhardt, S., Hoch, E., Borchers, K., Meyer, W., Krüger, H., Tovar, G. E. M.,and Gillner, A., “Fabrication of 2D Protein Microstructures and 3DPolymer-Protein Hybrid Microstructures by Two-Photon Polymerization”,Biofabrication, Vol.3, 025003, 2011.
[8]Manuela T. R., Shane M. E., Matteo L., Veronica A., and Michele M. N.,“Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing”, Journal of Acta Biomaterialia,Vol.9, pp. 4579-4584, 2013.
[9]Xia, H., Wang, J., Tian, Y., Chen, Q. D., Du, X. B., Zhang, Y. L., He, Y., and Sun, H. B.,“Ferrofluids for Fabrication of Remotely ControllableMicro-Nanomachines by Two-Photon Polymerization”, Advanced Materials,Vol.22, pp.3204-3207, 2010.
[10]Maruo, S., Ikuta, K., and Korogi, H.,“Submicron Manipulation Tools Driven byLight in a Liquid”, Applied Physics Letters, Vol.82, pp.133-135, 2003.
[11]Park, S. H., Lee, S. H., Yang, D. Y., Kong, H. J., and Lee, K.S.,“Subregional Slicing Method to Increase Three-Dimensional NanofabricationEfficiency in Two-Photon Polymerization”, Applied Physics Letters, Vol.87,154108, 2005.
[12]Takada, K., Sun, H. B., and Kawata, S., “Improved Spatial Resolution andSurface Roughness in Photopolymerization-Based Laser Nanowriting”, AppliedPhysics Letters, Vol.86, 071122, 2005.
[13]Divliansky, I. B., Weaver, G., Petrovich, M., Jabbour, T., Seigneur, H. P.,Parnell-Lampen, C., Thompson, A., Belfield, K. D., and Kuebler, S. M.,“CAD-Integrated System for Automated Multi-Photon Three-DimensionalMicro- and Nano-Fabriction”, Progress in Biomedical Optics and Imaging –Proceedings of SPIE, 5720, pp.196-203, 2005.
[14]Cunningham, L. P., Veilleux, M. P., and Campagnola, P. J., “FreeformMultiphoton Excited Microfabrication for Biological Applications Using aRapid Prototyping CAD-based Approach”, Optics Express, Vol.14,pp.8613-8621, 2006.
[15]Stichel, T., Hecht, B., Houbertz, R., and Sextl, G., “Two-Photon Polymerizationas Method for the Fabrication of Large Scale Biomedical Scaffold Applications”,Journal of Laser Micro/Nanoengineering, Vol.5, pp. 209-212, 2010.
[16]Sun, H. B., and Kawata, S., “Two-Photon Laser Precision Microfabrication andIts Applications to Micro-Nano Devices and System”, Journal of LightwaveTechnology, Vol. 21, pp. 624-633, 2003.
[17]Wu, S., Serbin, J., and Gu, M., “Two-Photon Polymerization forThree-Dimensional Micro-Fabrication”, Journal of Photochemistry andPhotobiology A: Chemistry, Vol. 181, pp. 1-11, 2006.
[18]Liao, C.Y., Bouriau, M., Baldeck, P., Léon, J.C., Masclet, C. and Chung, T.T.,“Two-dimensional slicing method to speed up the fabrication of mirco-objectsbased on two-photon polymerization”, In Apply Physics Letter, 91, 033108,2007.
[19]Christopher N. LaFratta, John T. Fourkas,* Tommaso Baldacchini, and Richard A. Farrer, “Multiphoton Fabrication ”2007.
[20]Maruo, S. and Fourkas, J. T., “Recent Progress in MultiphotonMicrofabrication”, Laser & Photonics Reviews, Rev.2, No. 1-2, pp. 100-111,2008
[21]Sun, H. B., Maeda, M., Takada, K., Chon, J. W. M., Gu, M., and Kawata, S.,“Experimental Investigation of Single Voxel for Laser Nanofabrication viaTwo-Photon Photopolymerization”, Applied Physics Letters, Vol. 83, pp.819-821, 2003.
[22]葉誠濱,「五軸CNC工具機刀具路徑規劃及誤差分析」,國立中正大學,碩士論文,民國98年。
[23]徐永源、高春林,「SolidWorks API 二次開發¬¬─使用Visual C++」,加樺國際,2010。
[24]http://help.solidworks.com/2014/english/api/sldworksapiprogguide/Welcome.htm
[25]董家威,「雙光子聚合微製造技術以能量均勻橢圓體為基之體素曝光時間最佳化研究」,國立中央大學,碩士論文,民國103
指導教授 廖昭仰 審核日期 2014-10-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明