博碩士論文 101323029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.237.66.86
姓名 劉耀之(Yao-Chih Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究
(Fabrication and Evaluation of Drill Ability for the Orthopedic Drill Bits Made of Bulk Metallic Glasses and Composites)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 凝膠濃度對胎盤幹細胞貼附及分化之影響★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究
★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究★ 不同製程對鋯基非晶質合金破裂韌性影響之研究
★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究★ 摻雜銀或銀銅氮氧化鉭薄膜之製備、特性分析及抗菌行為分析
★ 以反應式磁控濺鍍製備Ag2O/TiO2疊層薄膜及其特性之研究★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究
★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究
★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究★ 以微陽極導引電鍍法沉積奈米氧化鋅薄膜
★ Fabrication and Characterization of Polymethylmethacrylate (PMMA) Thin Film by Plasma Polymerization★ Effects of Diluted Ar in H2/SiH4 on Amorphous Hydrogenated Silicon Thin Film (i-layer) by an Inductive Coupled Plasma-Chemical Vapor Deposition (ICP-CVD) System
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著金屬玻璃及金屬玻璃複合材料的發展,本研究致力於塊狀金屬玻璃應用於生醫器械之開發,首先選定了具有極佳玻璃形成能力及良好熱穩定性的鋯基金屬玻璃Zr48Cu35.3Al8Ag8Si0.7,並使用額外添加法加入百分之十體積百分率、粒徑大小約5至30微米的鉭顆粒,使其成為非晶質複合材料。另外還選用了具有良好玻璃形成能力、熱穩定性佳、同時具有高比強度的Ti40Zr10Cu36Pd14。最後則是選用了Zr53Cu30Al8Nb4.5Pd4.5,此成分不僅繼承了鋯基優異的玻璃形成能力及熱穩定性,還去除了應用於生醫用材料會誘發過敏的鎳。
本研究根據文獻設計一反向拉伸試驗夾具,此夾具兩端連接於萬能試驗機上,藉由萬能試驗機提供等速率的模式進行測試,分析金屬玻璃鑽頭與市售醫用鑽頭的鑽孔能力的優劣。夾具一端固定電鑽,另一端固定被鑽樣品:豬後腿腿骨,並模擬實際骨科手術進行的狀況。藉由最後的分析結果可以發現,非晶質合金和其複材製作之鑽頭具有較平整的切削刃、較低之摩擦係數,因而表現出較低的鑽孔負荷,同時表面的磨耗亦較為輕微,詳細的比較列於各章節之中。由機械性質的比較來看,即使非晶質合金部分的特性如硬度不若市售骨骼鑽頭所選用的麻田散不鏽鋼來得強,但仍具有較佳之鑽孔效果,由此研究證明了此非晶質材料的確具有應用上的優勢以及發展性。
摘要(英) As the development of bulk metallic glasses (BMGs) and bulk metallic glass composites (BMGCs) grows, this study focus on the application as biomaterials. Three compositions: Zr48Cu35.3Al8Ag8Si0.7 with 10 vol. % ex-situ Ta powder, Ti40Zr10Cu36Pd14, and Zr53Cu30Al8Nb4.5Pd4.5 have been chosen. Choosing the Zr-based composite is due to its good glass forming ability (GFA), high thermal stability, and the enhance plasticity for better formability of machining. The Ti40Zr10Cu36Pd14 has relatively high specific strength, and great corrosion resistance. Zr53Cu30Al8Nb4.5Pd4.5 not only keeps the great GFA and thermal stability from Zr-based series, but also exclude the harmful element: Nickel which may cause irritation.
In this study, the characteristic of BMGC properties has been characterized. Furthermore, the as-cast BMGC rods are also manufactured into orthopedic drill bits. A compression device by revers pulling is designed for the drilling test. Through the drill testing and morphology examination of the drill bits, the BMGC drill bits will compare with the commercial surgical drill bit to realize their difference.
From the result we can find the surgical drill bit made by BMGC takes lower loading while drilling the real bone. The wear of BMG or BMGC materials is less, too. Though some of the hardness of BMG is lower than commercial martensitic stainless steel, the performance is still better.
關鍵字(中) ★ 塊狀金屬玻璃
★ 生醫材料
★ 骨科鑽頭
關鍵字(英) ★ Bulk Metallic Glasses
★ Biomaterial
★ Orthopedic Drill Bit
論文目次 摘要 i
English Abstract ii
致謝 iii
List of Contents iv
List of Figures vii
List of Tables x

Chapter One
1-1 Introduction 1
1-2 Motivation 3
Chapter Two
Background and Literature Review
2-1 Bulk Metallic Glasses 4
2-2 Glass Forming Ability 8
2-2-1 Empirical Rules 8
2-2-2 Indexes of Glass Forming Ability 9
2-2-3 Atomic Radius Effect 12
2-2-4 Minor Addition 13
2-2-5 Bulk Metallic Glass Composites 14
2-3 Manufacture of Bulk Metallic Glasses 15
2-4 Characteristic of Bulk Metallic Glasses 18
2-4-1 Mechanical Properties 18
2-4-2 Corrosion Resistance and Biocompatibility 20
iv


Chapter Three
Experimental Method
3-1 Experiment Procedure 21
3-2 Materials and Sample Preparation 22
3-3 Suction Casting 23
3-4 Characterization 26
3-4-1 Thermal Analyses 26
3-4-2 X–ray Diffraction Analyses 26
3-4-3 Density Measurement 26
3-4-4 Microhardness 27
3-4-5 Scanning Electron Microscopy 27
3-4-6 Energy Dispersive Spectrometer 27
3-5 Drilling Test 28

Chapter Four
Results and Discussion
4-1 Sample Preparations 31
4-2 Thermal Analyses 32
4-3 X-ray Diffraction Analyses 36
4-4 Density Measurement 37
4-5 Mechanical Property 38
4-5-1 Microhardness 38
4-5-2 Compression Test 38
4-5-3 Friction Test 40

v


4-6 Scanning Electron Microscopy 41
4-6-1 EDS Analyses 41
4-6-2 SEM Observation 42
4-7 Drilling test 47
4-8 Observation of Drill Bits 52

Chapter Five
Conclusion 65

Chapter Six
Reference 66
參考文獻 [1]. W. Klement, R. H. Willens, and P. Duwez, “Non-crystalline structure in solidified
gold-silicon alloys”, Nature, vol. 187, pp. 869-870, September 1960.
[2]. P. Duwez, R. H. Willens, and W. Klement, “Continuous Series of Metastable Solid Solutions in Silver-Copper Alloys”, Journal of Applied Physics, vol. 31, pp. 1136-1137, June 1960.
[3]. Bruno Zberg, Peter J. Uggowitzer, and Jörg F. Löffler, “MgZnCa Glasses Without Clinically Observable Hydrogen Evolution for Biodegrable Implants”, Nature Materials, vol. 8, pp. 887-891, September 2009.
[4]..Mari Ylönen, Tauno Vähä-Heikkilä, Hannu Kattelus, “Amorphous Metal Alloy Based MEMS for RF Application”, Sensors and Actuators A: Physical, vol. 132, pp. 283-288, November 2006.
[5]. Y. C. Chen, J. P. Chu, J. S. C. Jang, and C. W. Wu, “Thermoplastic Deformation and Micro/Nano-replication of and Au-based Metallic Glass in the Supercooled Liquid Region”, Materials Science & Engineer A, vol. 556, pp. 488-493, October 2012.
[6]. A. Inoue, B. Shen, H. Koshiba, H. Kato, and Alain R. Yavari, “Cobalt-based Bulk Glassy Alloy With Ultrahigh Strength and Soft Magnetic Properties”, Nature Materials, vol. 2, pp. 661-663, October 2003.
[7]. P. H. Tsai, Y. Z. Lin, J. B. Li, S. R. Jian, J. S. C. Jang, C. Li, J. P. Chu, and J. C. Huang, “Sharpness Improvement of Surgical Blade by Means of ZrCuAlAgSi Metallic Glass and Metallic Glass Thin Film Coating”, Intermetallics, vol. 31, pp. 127-131, December 2012.
[8]. J. B. Li, J. S. C. Jang, S. R. Jian, K. W. Chen, J. F. Lin, J. C. Huang, “Plasticity improvement of ZrCu-based Bulk Metallic Glass by Ex Situ Dispersed Ta Particles”, Materials Science and Engineering A, vol. 528, pp. 8244-8248, August 2011.
[9]. A. Inoue, T. Zhang, and T. Masumoto, “Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region” Materials Transactions JIM, Vol. 31, pp.177-183, March 1990.
[10]. H. S. Chen & K. A. Jackson, Metallic Glasses, Ohio, 1978.
[11]. A. Inoue, T. Zhang, and T. Masumoto, “Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region”, Journal of Applied Physics, vol. 30, pp. 965-792, December 1989.
[12]. A. Peker and W. L. Johnson, “A Highly Processable Metallic Glass: Zr41.2Ti13.8Cu12.5Ni10Be22.5”, Applied Physics Letters, vol. 63, pp. 2342-2344, October 1993.
[13]. A. Inoue and T. Zhang, “Fabrication of Bulk Glassy Zr55Al10Ni5Cu30 Alloy of 30 mm in Diameter by a Suction Casting Method”, Materials Transactions JIM, vol. 37, pp. 185-187, February 1996.
[14]. A. Inoue, “Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys”, Acta Materialia, vol. 48, pp. 279-306, January 2000.
[15]. C. L. Qiu, Q. Chen, L. Liu, K. C. Chan, J. X. Zhou, P. P. Chen, and S. M. Zhang, “A Novel Ni-free Bulk Metallic Glass with Enhanced Plasticity and Good biocompatibility”, Scripta Materialia, vol. 55, pp. 605-608, October 2006.
[16]. A. Inoue, N. Nishiyama and T. Matsuda, “Preparation of bulk glassy Pd40Cu30Ni10P20 Alloy of 40 mm in Diameter by Water Quenching” Materials Transactions JIM, vol. 37, pp. 181-184, February 1996.
[17]. N. Nishiyama, K. Takenaka, H. Miura, N. Saidoh, Y. Zeng, and A. Inoue, “The World’s Biggest Glassy Alloy Ever Made”, Inermetallics, vol. 30, pp. 19-24, November 2012.
[18]. Z. P. Lu, C. T. Liu, J. R. Thompson, and W. D. Porter, “Structural amorphous steels”, Physical Review Letters, vol. 92, pp. 245503-1-4, June 2004.
[19]. A. Inoue, “Bulk amorphous and nanocrystalline alloys with high functional properties”, Materials Science and Engineering: A, vol. 304-306, pp. 1-10, May 2001.
[20]. A. Inoue, B. L. Shen, C. T. Chang, “Super-high Strength of Over 4000 MPa for Fe-based Bulk Glassy Alloys in [(Fe1-xCox)0.75B0.2Si0.05]96Nb4 System”, Acta Materialia, vol. 52, pp. 4093-4099, August 2004.
[21] J. H. Yao, J. Q. Wang, and Y. Li, “Ductile Fe-Nb-B Bulk Metallic Glass With Ultrahigh Strength”, Applied Physics Letters, vol. 92, pp. 251906-1-3, June 2008.
[22]. Hong-Kyu Kim, Kwang-Bok Lee, and Jae-Chul Lee, “Ductile Fe-based Amorphous Alloy”, Materials Science and Engineering: A, vol. 552, pp.399-403, August 2012.
[23]. H. Ma, Shi, and J. Xu, Y. Li, and E. Ma, “Discovering Inch-diameter Metallic Glasses in Three-dimensional Composition Space”, Applied Physics Letters, vol. 87, pp. 181915-1-3, October 2005.
[24]. J. S. C. Jang, J. Y. Ciou, T. H. Hung, J. C. Huang, and X. H. Du, “Enhanced Mechanical Performance of Mg Metallic Glass With Porous Mo Particles”, Applied Physics Letters, vol. 92, pp. 011930-1-3, January 2008.
[25]. L. J. Chang, J. S. C. Jang, B. C. Yang, and J. C. Huang, “Crystallization and Thermal Stability of The Mg65Cu25-xGd10Agx ( x = 0 - 10 ) Amorphous Alloys”, Journal of Alloys and Compounds, vol. 434-435, pp. 221-224, May 2007.
[26]. J. S. C. Jang, W. J. Li, T. H. Li, S. R. Jian, J. C. Huang, and T. G. Nieh, “Thermoplastic Forming Ability of a Mg-base Bulk Metallic Glass Composites Reinforced with Porous Mo Particles”, Intermetallics, vol. 18, pp. 1964-1968, October 2010.
[27]. S. L. Zhu, X. M. Wang, and A. Inoue, “A New Ti-based Bulk Glassy Alloy with Potential for Biomedical Application”, Materials Science and Engineering: A, vol. 459, pp. 233-237, June 2007.
[28]. S. L. Zhu, X. M. Wang, F. X. Qin, M. Yoshimura, and A. Inoue, “New TiZrCuPd Quaternary Bulk Alloys with Potential of Biomedical Applications”, Materials Transactions JIM, vol. 48, pp. 2445-2448, September 2007.
[29]. S. L. Zhu, X. M. Wang, and A. Inoue, “Glass-forming Ability and Mechanical Properties of Ti-based Bulk Glassy Alloys with Large diameters of Up to 1 cm”, Intermetallics, vol. 16, pp. 1031-1035, August 2008.
[30]. D. Turnbull, “Under What Conditions can a Glass be Formed?”, Contemporary Physics, vol. 10, pp. 473-488, August 1969.
[31]. Q. Jing, Y. Zhang, D. Wang, and Y. Li, “A Study of the Glass Forming Ability in ZrrNiAl Alloys”, Materials Science and Engineering: A, vol. 441, pp. 106-111, December 2006.
[32]. Z. P. Lu and C. T. Liu, “A New Glass-forming ability criterion for bulk metallic glasses”, Acta Materialia, vol. 50, pp. 3501-3512, August 2002.
[33]. X. H. Du, J. C. Huang, C. T. Liu, and Z. P. Lu, “New Criterion of Glass Forming Ability for Bulk Metallic Glasses”, Journal of Applied Physics, vol. 101, pp. 086108-1-3, April 2007.
[34]. Z. Long, H. Wei, Y. Ding, P. Zhang, G. Xie, and A. Inoue, “A New Criterion for Predicting the Glass-forming ability of Bulk Metallic Glasses”, Journal of Alloys and Compounds, vol. 475, pp. 207-219, May 2009.
[35]. O. N. Senkov and D. B. Miracle, “Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys”, Materials Research Bulletin, vol. 36, pp. 2183-2198, October 2001.
[36]. T. Egami and Y. Waseda, “Atomic Size Effect on the Formability of Metallic Glasses”, Journal of Non-Crystalline Solids, vol. 64, pp. 113-134, 1984.
[37]. Z. P. Lu and C. T. Liu, “Role of Minor Alloying Additions in Formation of Bulk Metallic Glasses: A Review”, Journal of Materials Science, vol. 39, pp. 3965-3974, June 2004.
[38]. S. Guo and C. T. Liu, “Phase Stability in High Entropy Alloys: Formation of Solid-solution Phase or Amorphous Phase”, Progress in Nature Science: Materials International, vol. 21, pp. 433-446, September 2011.
[39]. N. Y. Wu, C. J. Hsieh, Jason S. C. Jang, S. R. Jian, and Y. T. Chen, “Thermal and Mechanical Properties of the (Cu36Zr48Al8Ag8)100-XSiX (x = 0-1) Amorphous Alloys”, Materials Science Forum, vol. 638-642, pp. 1627-1631, 2009.
[40]. C. N. Kuo, J. C. Hung, J. B. Li, J. S. C. Jang, C. H. Lin, and T. G. Nieh, “Effects of B2 precipitate size on transformation-induced plasticity of Cu-Zr-Al glassy Alloys”, Journal of Alloys and Compounds, vol. 590, pp. 453-458, March 2014.
[41]. H. S. Chen and C. E. Miller, “A Rapid Quenching Technique for the Preparation of Thin Uniform Films of Amorphous Solids”, Review of Scientific Instruments, vol. 41, pp. 1237-1238, August 1970.
[42]. H. H. Liebermann and C. D. Graham, “Production of Amorphous Alloy Ribbon and Effects of Apparatus Parameters on Ribbon Dimensions”, IEEE Transactions on Magnetics, vol. 12, pp. 921-923, November 1976.
[43]. A. Peker and W. L. Johson, “A Highly Processable Metallic glass: Zr41.2Ti13.8Cu12.5Ni10Be22.5”, Applied Physics Letters, vol. 63, pp. 2342-2344, October 1993.
[44]. Y. Yokoyama, K. Fukaura, and A. Inoue, “Cast Structure and Mechanical Properties of Zr-Cu-Ni-Al Bulk Glassy Alloys”, Intermetallics, vol. 10 pp.1113-1124, November 2002.
[45]. M. Tao, Atul H. Chokshi, Robert D. Conner, Guruswami Ravichandran, and William L. Johnson, “Deformation and Crystallization of Zr-based Amorphous Alloys in Homogeneous Flow Regime”, Journal of Materials Research, vol. 25, pp. 1137-1148, June 2010.
[46]. Christopher A. Schuh, Todd C. Hufnagel, and U. Ramamurty, “Mechanical Behavior of Amorphous Alloys”, Acta Materialia, vol. 55, pp.4067-4109, July 2007.
[47]. M. L. Manning, E. G. Daub, J. S. Langer, and J. M. Carlson, “Rate Dependent Shear Bands in a Shear Transformation Zone Model of Amorphous Solids”, Physical Review E, vol. 79, pp. 016110-1-18, January 2009.
[48]. Z. F. Zhang, H. Zhang, X. F. Pan, J. DAS, and J. Eckert, “Effect of Aspect Ratio on the Compressive Deformation and Fracture Behaviour of Zr-based Bulk Metallic Glass”, Philosophical Magazine Letters, vol. 85, pp. 513-521, October 2005.
[49]. Z. Long, Y. Shao, G. Xie, P. Zhang, B. Shen, and A. Inoue, “Enhanced Soft-magnetic and Corrosion Properties of Fe-based Bulk Glassy Alloys with Improved Plasticity Through the Addition of Cr”, Journal of Alloys and Compounds, vol. 462, pp. 52-59, August 2008.
[50]. JuEun Lee, B. Arda Gozen, and O. Burak Ozdoganlar, “Modeling and Experimentation of Bone Drilling Forces”, Journal of Biomechanics, vol. 45, pp. 1076-1083, April 2012.
指導教授 鄭憲清、李泉
(Jason Shian-Ching、Jang Chuan Li)
審核日期 2014-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明