博碩士論文 101323032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.238.184.78
姓名 陳弘志(Hung-chih Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 A1070在累進式背擠製下的機械性質與微結構之研究
相關論文
★ 中尺寸LED背光模組之實驗研究★ 利用有限元素法與反應曲面法探討 金屬成型問題之最佳化設計-行星路徑旋轉鍛造傘齒輪為例
★ 以反應曲面法進行行動電話卡勾之最佳化設計★ 以微分式內涵塑性理論分析材料受軸向循環負載之塑性行為
★ 超音波輔助沖壓加工之應用-剪切、引伸與等通彎角擠製★ 應用多體動力學於具循環氣體負載之迴轉式壓縮機振動預測模型建立
★ 以有限元素法與反應曲面法分析螺旋傘齒輪之旋轉鍛造最佳化設計★ 超音波振動輔助鋁合金6061及低碳鋼S15C拉伸試驗之研究
★ 旋轉鍛造螺旋齒輪製程分析★ 等通道扭轉彎角擠製之有限元素法及反應曲面法分析
★ 以有限元素法與反應曲面法分析增量式板金成形★ 以有限元素法與反應曲面法分析螺旋傘齒輪之雙錐輥旋轉鍛造最佳化設計
★ 以有限元素法與反應曲面法分析兩點增量成形★ 引伸成形加工問題之有限元素分析
★ 應用流函數法分析軸對稱熱擠製加工問題★ 非對稱壓延加工問題之有限元素法分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文對於累進式背擠製(accumulative back extrusion, ABE)製程作出探討,利用自行設計之模具,以實驗的方式對鋁材1070 變形前後的機械性質與微結構的作出探討。
在實驗中,以不同的變形比(deformation ratio)與沖頭行程(die stroke)兩大實驗參數互相搭配下, 對其機械性質與微結構進行探討,機械性質部分主要討論其硬度(hardness)變化,而微結構的部分針對晶粒細化後的晶粒大小(grain size)與晶界取向差異角度(misorientation angle of grain boundaries)進行探討。
實驗結果顯示,越大的變形比與沖頭行程可產生較大的塑性變
形,會產生硬度的提升、晶粒細化的現象與高晶界取向差異角度的提
升。
摘要(英) This article is focus on a manufacturing process called
accumulative back extrusion, its experiments are done with
aluminum 1070 and some self-designed molds. The differences of the mechanical property and the microstructure between before and after forming are investigated.
The two main parameters in experiments, deformation ratio
and die stroke, are operating in mutual. The discussion of
mechanical property is focus on the change of hardness. And the part of microstructure is about grain size and the
misorientation.
The results reveal that the larger deformation ratio and die
stroke are, the more plastic deformation are. And that will cause the elevation of hardness, the phenomenon of grain refining and the raise of high misorientation angle of grain boundaries.
關鍵字(中) ★ 累進式背擠製
★ 機械性質
★ 微結構
關鍵字(英)
論文目次 摘要 ...................................................... i
Abstract ................................................. ii
圖 目 錄 .................................................. vi
表目錄 .................................................. viii
一、緒論 ................................................. 01
1-1 前言 ................................................ 01
1-2 研究動機 ............................................ 03
二、文獻回顧 ............................................. 04
2-1 鋁簡介 .............................................. 04
2-1-1 金屬鋁........................................... 04
2-1-2 鋁合金分類....................................... 04
2-2 超細晶粒(Ultra-fine grained, UFG)材料 ............... 07
2-2-1 沿革 ............................................ 07
2-2-2 特性 ............................................ 07
2-2-3 製造方法 ........................................ 09
iii2-3 劇烈塑性變形(Severe Plastic Deformation)方法 ........ 09
2-4 累進式背擠製(Accumulative Back Extrusion) ........... 09
2-4-1 擠製 ............................................ 10
2-4-2 累進式背擠製 .................................... 11
三、實驗方法與步驟 ....................................... 15
3-1 實驗材料 .......................................... 15
3-2 實驗器材 .......................................... 15
3-3 實驗藥品 .......................................... 15
3-4 分析儀器 .......................................... 16
3-5 實驗步驟 .......................................... 16
四、結論與討論 ........................................... 22
4-1 力量-行程 ......................................... 22
4-2 硬度比較........................................... 22
4-3 晶粒大小 .......................................... 22
4-4 取向差異角度組成(misorientation angle distribution) 22
iv五、結論 .............................................. 39
參考文獻 .............................................. 40
附錄 .................................................. 48
參考文獻 [1] Ruslan Z. Valiev, “Structure and mechanical properties of ultrafine-grained metals”, Materials Science and Engineering: A, vol. 234-236, pp. 59-66, August 1997
[2] Yi Huang, Terence G. Langdon, “Advances in ultrafine-grained materials”, materialstoday, vol. 16, iss. 3, pp. 85-93, March 2013
[3] Y. Estrin, A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A wealth of challenging science”, Acta Materialia, vol. 61, iss. 3,pp. 782-817, February 2013
[4] R.Z Valiev, R.K Islamgaliev, I.V Alexandrov, “Bulk nanostructured materials form severe plastic deformation”, Progress in Materials Science, vol. 45, iss. 2, pp. 103-189, March 2000
[5] Minoru Furukawa, Zenji Horita, Minoru Nemoto, Terence G. Langdon, “The use of severe plastic deformation for microstructural control”, Materials Science and Engineering: A, vol. 324, iss. 1-2, pp. 82-89, February 2002
[6] Azushima, R.Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P.Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, “Severe plastic deformation(SPD) processes for metals”, CIRP Annals – Manufacturing Technology, vol. 57, iss. 2, pp. 716-735, 2008
[7] Laszlo S. Toth, Chengfan Gu, “Ultrafine-grain metals by severe plastic deformation”, Materials Characterization, vol. 92, pp. 1-14, June 2014
[8] Ruslan Z. Valiev, Yuri Estrin, Zenji Horita, Terence G. Langdon, Michael J. Zehetbauer, Yuntian T. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformation”, Nanostructured Materials, vol. 58, iss. 4, pp.33-39, April 2006
[9] H. Alihosseini, M. Asle Zaeem, K. Dehghani, “A cyclic forward-backward extrusion process as a novel severe plastic deformation for production of ultrafine grains materials”, Materials Letters, vol. 68, pp. 204-208, February 2012
[10] R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov, “Structure and properties of ultrafine-grained materials produced by severe plastic deformation”, Materials Science and Engineering: A, vol. 68, iss. 2, pp. 141-148, August 1993
[11] M. Reihanian, R. Ebrahimi, M.M. Moshksar, D. Terada, N. Tsuji, “Microstructure quantification and correlation with flow stress of ultrafine grained commercially pure AL fabricated by equal channel angular pressing (ECAP)”, Materials Characterization, vol. 59, iss. 9, pp. 1312-1323, September 2008
[12] B. Tolaminejad, K. Dehghani, “Microstructural characterization and mechanical properties of nanostructured AA1070 aluminum after equal channel angular extrusion”, Materials & Design, vol. 34, pp. 285-292, February 2012
[13] Ruslan Z. Valiev, Terence G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement”, Progress in Materials Science, vol. 51, iss. 7, pp. 881-981, September 2006
[14] Yongjun Chen, Qudong Wang, Jinbao Lin Zhang, Chunquan Zhai, “Fabrication of bulk YFG magnesium alloys by cyclic extrusion compression”, Journal of Materials Science, vol. 42, pp. 7601-7603, September 2007
[15] M. Richert, Q. Liu, N. Hansen, “Microstructural evolution over a large strain range in aluminum deformed by cyclic-extrusion-compression”, Materials Science and Engineering: A, vol. 260, iss. 1-2, pp. 275-283, February 1999
[16] Y. Beygelzimer, V. Varyukhin, S. Synkov, D. Orlov, “Useful properties of twist extrusion”, Material Science and Engineering: A”, vol.503, iss. 1-2, pp.14-17, March 2007
[17] H. Zendehdel, A. HAssani, “Influence of twist extrusion process on microstructure and mechanical properties of 6063 aluminum alloy”, Materials & Design, vol. 37, pp. 13-18, May 2012
[18] Dmitry Orlov, Yan Beygelzimer, Sergey Synkov, Viktor Varyukhin, Nobuhiro Tsuji, Zenji Horita, “Plastic flow, structure and mechanical properties in pure AL deformed by twist extrusion”, Materials Science and Engineering: A”, vol. 519, iss. 1-2, pp. 105-111, August 2009
[19] Alexander P. Zhilyaev, Terence G. Langdon, “Using high-pressure torsion for metal processing: Fundamentals and applications”, Progress in Materials Science, vol. 53, iss. 6, pp. 893-979, August 2008
[20] Kaveh Edalati, Akito Yamamoto, Zenji, Tatsumi Ishihara, “High-pressure torsion of pure magnesium: Evolution of mechanical properties, “microstructures and hydrogen storage capacity with equivalent strain”, Scripta Materialia, vol. 64, iss. 9, pp. 880-883, May 2011
[21] A.P Zhilyaez, G. V Nuruskamova, B.-K Kim, M.-D Baro, J.A Szpunar, T.G Langdon, ”Experimental parameters influencing grain refinement and microstructural exolution during high-pressure torsion”, Acta Materialia, vol. 51, iss. 3, pp. 753-765, February 2003

[22] S.M. Fatemi-Varzaneh, AZarei-Hanzaki, “Accumulative back extrusion (ABE) processing as a novel bulk deformation method”, Materials Science and Engineering: A, vol. 504, iss. 1-2, pp. 104-106, March 2011.
[23] G. Faraji, M.M. Mashhadi, H.S. Kim, ”Microstructure inhomogeneity in ultra-fine grained bulk AZ91 produced by accumulative back extrusion (ABE)”, Materials Science and Engineering: A, vol. 528, iss. 13-14, pp. 4312-4317, May 2011.
[24] H. Alihosseini, G.Faraji, A.F. Dizaji, K. Dehghani, “Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)”, Materials Characterization, vol. 68, pp. 14-21, June 2012.
[25] G. Faraji, H. Jafarzadeh, H.J. Jeong, M.M. Mashhadi, H.S. Kim, “Numerical and experimental investigation of the deformation behavior during the accumulative back extrusion of an AZ91 magnesium alloy”, Materials & Design, vol. 35, pp. 251-258, March 2012.
[26] N. Haghdadi, A. Zarei-Hanzaki, D. Abou-Ras , “Microstructure and mechanical properties of commercially pure aluminum processed by accumulative back extrusion”, Materials Science & Engineering A, vol. 584, pp. 73-81, November 2013
[27] Patrick B. Berbon, Nikolai K. Tsenev, Ruslan Z. Valie, Minoru Furukawa, Zenji Horita, Minoru Furukawa, Terence G. Langdon, “Fabrication of bulk ultrafine-grained materials through intense plastic straining”, Metallurgical and Materials Transactions A, vol. 29, iss. 9, pp. 2237-2243, September 1998
[28 Terence G. Langdon, “Achieving superplasticity in ultrafine-grained metals”, Nanostructured Materials, vol. 67, pp. 2-8, December 2013
[29] L. Kommel, I. Hussainova, O. Volobueva, “Microstruture and properties development of cooper during severe plastic deformation”, Materials & Design, vol. 28, iss. 7, pp.2121-2128, 2007
[30] Megumi Kawasaki, Terence G. Langdin, “Principles of
superplasticity in ultrafine-grained materials”, Journal of
Materials Science, vol. 42, iss. 5, pp. 1782-1796, March 2007
[31] Georgy J. Raab, Ruslan Z. Valiev, Terry C. Lowe, Yuntian T. Zhu, “Continuous processing of ultrafine grained Al by ECAP-Conform”, Materials Science and Engineering: A, vol. 382, iss. 1-2, pp. 30-34, September 2004
[32] Atul H. Chokshi, Amiya K. Mukherjee, Terence G. Langdon, “Superplasticity in advanced materials”, Materials Science and Engineering: R: Reprts, vol. 10, iss. 6, pp. 237-274, September 1993
[33] N. Haghdadi, A. Zarei-Hanzaki, D. Abou-Ras, M.H. Maghsoudi, A. Ghorbani, M. Kawasaki,”An investigation into the homogeneity of microstructure, strain pattern and hardness of pure aluminum processed by accumulative back extrusion”, Materials Science and Engineering: A, vol. 595, pp. 179-187, February 2014
指導教授 葉維磬 審核日期 2014-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明