博碩士論文 101323043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:34.239.179.228
姓名 顏潤賢(Jun-hsien Yen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討
(The characterization of thermal electric properties for the nano/micro-grain β-Zn4Sb3 fabricated by the combination of melt spinning and vacuum hot pressing)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究
★ 不同製程對鋯基非晶質合金破裂韌性影響之研究★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究
★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究
★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究
★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究
★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究
★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響★ 中低密度高熵合金之合金設計與其微結構變化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) β-Zn4Sb3是一種具有成本低廉及易製備等優點的熱電材料,同時也是在350~400℃溫度區間內熱電性能最佳的熱電材料,有文獻指出其zT值在400℃時可高達1.37。但由於Zn-Sb二元合金在Zn含量35~45wt%相變化較為複雜,當微量調整成分配比就會產生其他介金屬相,傳統製備方式是以熔融擴散法持溫一段時間後水淬,利用急速冷卻方式維持元素比例並避免偏析,但是此種製程製備出的塊材會因熱應力而產生大量裂縫,導致機械性質不佳,因此,後續有研究學者嘗試利用粉末冶金的方式,將原料磨成粉末再經燒結獲得具有較佳機械性質的塊材。
現今主流提高熱電材料的熱電性能的方式主要有兩種,摻雜及結構奈米化,本研究即是以結構奈米化作為探討方向。本研究中利用急冷旋鑄法(線速度20與30 m/s)製備具有奈米晶的β-Zn4Sb3薄帶,將其研磨成粉末後與熔融法製備的微米晶粉體互相混合並以真空熱壓法燒結成塊材。期望藉由晶粒細化效果提高材料的Seebeck係數,由於奈米/微米複合結構會造成長波聲子散射而降低材料的晶格導熱率,進而提高其zT值。研究結果顯示奈米/微米複合結構熱壓塊材的熱傳導係數會因熱擴散係數下降而降低,其中以摻雜30 wt% 急冷旋鑄粉體的熱壓塊材在兩組摻雜粉體中都表現出最低的熱傳導係數(30 m/s30%:8.00 mW/cmK,20 m/s30%:7.37 mW/cmK),但其數值和完全由急冷旋鑄粉體製備的熱壓塊材相近(30m/s:7.64 mW/cmK,20m/s:7.60 mW/cmK);摻雜粉體的塊材其zT值並沒有高於完全由急冷旋鑄薄帶的製備成的熱壓塊材,急冷旋鑄薄帶熱壓塊材有最高的zT值,20 m/s熱壓塊材在350℃時為0.97,30 m/s熱壓塊材則為1.06較於熔融粉體熱壓塊材的0.85。
摘要(英) The thermoelectric(TE) material β- Zn4Sb3 has the best performance during 350~400℃. Its advantages include cheap and simply fabrication. Some research indicated that its zT value can reach 1.37 at 400℃[2]. However, Zn-Sb phase diagram shows complex phase transformation as Zn content is 35~45 wt%. In other words, it will produce other phase if composition had shift. Therefore, traditional manufacture method using melt diffusion and quenching to prevent segregation. But quenching process always results in forming many crack and crack inside the bulk β-Zn4Sb3 due to thermal chock, and then degraded mechanical properties. To resolve this problem, powder metallurgy process was selected to be the solution.
In recent, doping and nanostructure is the major way to enhance TE performance. In this study, we select nanostructure as direction. We use two methods to make β-Zn4Sb3 powder. One is melt spinning process(20、30 m/s), which belong to one kind of rapid solidification process(RSP), to make β-Zn4Sb3 ribbon with has nano-grain. The other is melt diffusion, can make bulk β-Zn4Sb3 with large grain micrometer to nanometer. The RSP ribbons and melt diffused bulk material were grinded into powders of particle size <76 μm .Then mix these two kind powders and hot compress (HP) to make bulk samples. We wish this hybrid structure can increase the phonon scattering and decreasing the lattice thermal conductivity and then enhance zT value. The results proved that nano/micro grained structure can decrease thermal conductivity, those HP bulk sample composed of 30 wt% RSP powder and 70 wt% bulk powder have the lowest thermal conductivity(30m/s30%:8.00mW/cmK,20m/s30%:7.37:mW/cmK) among all of the TE samples in this study. However HP bulk sample composed of 100% RSP powder have similar thermal conductivity(30m/s:7.64 mW/cmK,20m/s:7.60 mW/cmK), and the zT value of RSP HP bulk sample are higher than the others. At 350℃, zT value of 30 m/s RSP HP bulk sample is 1.06;20 m/s RSP HP bulk sample is 0.97, compare the bulk HP ingot (0.85), its zT value shows significant improving.
關鍵字(中) ★ 熱電
★ Zn4Sb3
★ 急冷旋鑄法
關鍵字(英) ★ thermal electrical
★ Zn4Sb3
★ melt spinning
論文目次 V
目錄
中文摘要 ...... I
Abstract ...... III
目錄 ... V
圖目錄 ..... VII
表目錄 ....... IX
一、 前言 ....... 1
1.1. 緒論 ... 1
1.2. 研究動機與目的 . 3
二、 文獻回顧 ........ 6
2.1. 熱電效應概敘 ..... 6
2.1.1. Seebeck 效應 ... 8
2.1.2. Peltier 效應 ...... 9
2.1.3. 熱傳導率 ....... 10
2.1.4. 導電率 .. 11
2.1.5. Wiedemann-Franz 定律 ... 12
2.2. Zn4Sb3 ....... 13
2.2.1. Zn4Sb3 之原子組成比 ... 14
2.2.2. Zn4Sb3 之晶體結構 ....... 14
2.2.3. 熔融擴散法製備Zn4Sb3 ........ 15
2.2.4. 粉末冶金法製備Zn4Sb3 ........ 16
2.2.5. 急冷旋鑄法製備奈米晶Zn4Sb3 ..... 17
2.2.6. 摻雜其他元素的Zn4Sb3 ........ 17
三、 實驗方法與實驗設備 .... 23
3.1. 粉體製備 .. 24
3.1.1. 成分確認&相變分析 ...... 24
3.1.2. 大晶粒塊材製備 .... 24
3.1.3. 急冷旋鑄法製備具奈米晶的Zn4Sb3 薄帶 ...... 25
3.1.4. 粉體研磨及混合 .... 25
3.2. 真空熱壓成形 ... 26
3.3. 材料性質分析 ... 27
3.3.1. 示差掃描熱分析(DSC) ... 27
3.3.2. X 光繞射分析(XRD) ...... 27
3.3.3. 穿透式電子顯微鏡分析(TEM ) ....... 28
3.3.4. 掃描式電子顯微鏡分析(SEM) ........ 28
3.3.5. Seebeck 係數及電阻率量測 .... 28
VI
3.3.5.1. 試片製備 ... 28
3.3.5.2. Seebeck 係數量測 ....... 29
3.3.5.3. 導電率量測 ........ 30
3.3.6. 熱傳導係數量測 .... 30
3.3.6.1. 比熱量測 ... 31
3.3.6.2. 密度量測 ... 31
3.3.6.3. 熱擴散係數量測 32
四、 實驗結果與討論 ... 42
4.1. Zn4Sb3 比例與相變化之關聯 .... 42
4.1.1. XRD 繞射分析結果 ........ 42
4.1.2. DSC 熱分析結果 ... 43
4.2. 急冷旋鑄為結構既相變化分析 .. 45
4.2.1. DSC 熱分析結果 ... 46
4.2.2. XRD 繞射分析結果 ........ 46
4.2.3. TEM 微觀結構分析 ........ 47
4.3. 熱壓塊材分析 ... 48
4.3.1. 熱壓塊材密度 ........ 48
4.3.2. 熱壓塊材XRD 分析結果 ........ 48
4.3.3. 熱壓塊材SEM 分析結果 ........ 49
4.3.4. 熱壓塊材導電率量測 ..... 49
4.3.5. 熱壓塊材Seebeck 量測 .. 50
4.3.6. 熱壓塊材功率因子(Power factor)量測 ..... 51
4.3.7. 熱壓塊材比熱量測 52
4.3.8. 熱壓塊材熱擴散係數量測 ...... 52
4.3.9. 熱壓塊材熱傳導係數 ..... 53
五、 結論 ..... 80
六、 參考文獻 ...... 82
參考文獻 [1]. G. Jeffrey Snyder, Mogens Christensen, Eiji Nishibori, Thierry Caillat,and Bo Brummerstedt Iversen, ”Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties”, N mat, Vol.3, pp.459-463, 2004
[2]. T. Caillat, J.-P. Fleurial and A. Borshchevsky,” Preparation and thermoelectric properties of Semiconducting Zn4Sb3”, Phys. Chem. Solids ,vol.58, pp.1119–1125 , 1997.
[3]. A. N. Qiu, L. T. Zhang, and J. S. Wu,” Crystal structure, electronic structure, and thermoelectric properties of β-Zn4Sb3 from first principles”, Phys. Rev. B 81, 2010
[4]. Birgitte L. Pedersen, Henrik Birkedal, Mats Nygren, Poul Toft Frederiksen, and Bo B. Iversen,” The effect of Mg doping on the thermoelectric performance of Zn4Sb3”, J. Appl. Phys ,vol.105, 2009
[5]. Q. Q. Wang, X. Y. Qin, D. Li, and T. H. Zou,” Enhancement of thermopower and thermoelectric performance through resonant distortion of electronic density of states of Zn4Sb3 doped with Sm”, J.Appl. Phys. Lett , vol.102,2013
[6]. Dekui Qi, Xinfeng Tang, Han Li, Yonggao Yan, And Qingjie Zhang,” Improved Thermoelectric Performance and Mechanical Properties of Nanostructured Melt-Spun b-Zn4Sb3”, J.Elec. Mat, vol.39,2010
[7]. Pee-Yew Lee, Tzu-Chien Chen, Jing-Yi Huang, Huey-Lin Hsieh, Jason Shian-Ching Jang,” Enhancement of the thermoelectric performance in nano-/micro-structured p-type Bi0.4Sb1.6Te3 fabricated by mechanical alloying and vacuum hot pressing”, J. Alloys Compd, 2013
[8]. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G.Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial and P. Gogna,” New Directions for Low-Dimensional Thermoelectric Materials”, Adv. Mater, vol.19, pp.1043-1053, 2007
[9]. G. Jeffrey Snyder and Eric S. Toberer, “Complex thermoelectric materials”, Nat .Mater, vol.7, pp.105-114, 2008
[10]. M. Tapiero, S. Tarabichi, J.G. Gies, C. Noguet, J.P. Zielinger,M. Joucla , J.L. Loison And M. Robino, ” Preparation And Characterization Of Zn4Sb3”, sol. Energ. Mater, vol.12, pp.257-274,1985
[11]. Fouzia Adjadj, El-djemai Belbacha, Malek Bouharkat, “Differential calorimetric analysis of the binary system Sb–Zn”, J. Alloys Compd, vol.430, pp.85-91, 2007
[12]. Yurij Mozharivskyj, Alexandra O. Pecharsky, Sergey Bud’ko, and Gordon J. Miller,” A Promising Thermoelectric Material: Zn4Sb3 or Zn6-äSb5. Its Composition, Structure, Stability, and Polymorphs. Structure and Stability of Zn1-äSb”, Chem. Mater, pp.1580-1589, 2004
[13]. Go Nakamoto, Keisuke Kinoshita, Makio Kurisu, “Thermal expansion anomalies at high temperatures near stoichiometric Zn4Sb3 composition”, Alloys Compd, vol.436, pp.65-68, 2007
[14]. H. Okamoto,” Sb-Zn (Antimony-Zinc)”, JPED, vol.29, 2008
[15]. Protima Rauwel, Ole Martin Løvvik, Erwan Rauwel, Eric S. Toberer, G. Jeffrey Snyder and Johan Taftø,” Nanostructuring in b-Zn4Sb3 with variable starting Zn compositions” , Phys. Status Solidi, vol.A 208, pp.1652-1657,2011
[16]. Protima Rauwel, Ole Martin Løvvik, Erwan Rauwel and Johan Taftø, “Nanovoids in thermoelectric b-Zn4Sb3 A possibility for nanoengineering via Zn diffusion”, Acta Materialia, vol.59, pp.5266–5275, 2011
[17]. Fausto Cargnoni, Eiji Nishibori, Philippe Rabiller, Luca Bertini, Jeffrey Snyder, Mogens Christensen, Carlo Gatti, and Bo Brummerstadt Iversen, ” Interstitial Zn Atoms Do the Trick in Thermoelectric Zinc Antimonide, Zn4Sb3: ACombined Maximum Entropy Method X-ray Electron Density and AbInitio Electronic Structure Study”, Chem. Eur. J, vol.10, pp.3861-3870, 2004
[18]. Min-Seok Song, Soon-Mok Choi and Won-Seon Seo, ”Thermoelectric and Mechanical Properties of Zn4Sb3 Polycrystals Sintered by Spark Plasma Sintering”, J. Korean Phy. Soc,vol.60, pp.1735-1740, 2012
[19]. Soon-Chul Ur, Philip Nash And Il-Ho Kim, “Mechanical alloying and thermoelectric properties of Zn4Sb3”, J. Mater. Sci,vol.38, pp.3553-3558, 2003
[20]. K. Ueno, A. Yamamoto, T. Noguchi, T. Inoue, S. Sodeoka, H. Obara, ” Optimization of hot-press conditions of Zn4Sb3 for high thermoelectric performance. II. Mechanical properties”, J. Alloys Compd,vol.388, pp.118-121, 2005
[21]. Soon-Chul Ur, Philip Nash, and Recardo Schwarz, ” Mechanical and Thermoelectric Properties of Zn4Sb3 and Zn4Sb3+Zn Directly Synthesized Using Elemental Powders”, Met. Mat, vol.11, pp.435-441, 2005
[22]. F. Liu, X. Y. Qin, and D. Li, "The effect of In doping on thermoelectric properties and phase transition of Zn4Sb3 at low temperatures" J. Phys. D: Appl. Phys, vol.40, pp. 4974–4979, 2007
[23]. F. Liu, X. Y. Qin, and H X Xin, " Thermoelectric properties of (Zn0.98M0.02)4Sb3 (M = Al, Ga and In) at low temperatures" J. Phys. D: Appl. Phys, vol.40, pp.7811-7816, 2007
[24]. L. Pan, X.Y. Qin, H.X. Xin, D. Li, J.H. Sun, J. Zhang, C.J. Song, R.R. Sun, ” Enhanced thermoelectric properties of iron doped compound (Zn1-xFex)4Sb3”, Intermetallics, vol.18 , pp.1106–1110, 2010
[25]. Limei Zhou, Wei Li, Jun Jiang,∗, Ting Zhang, Yong Li, Gaojie Xu, Ping Cui, “Effect of Bi doping on the thermoelectric properties of Zn4Sb3”, J. Alloys Compd, vol.503, pp.464-467, 2010
[26]. B. L. Pedersen, H. Birkedal, E. Nishibori, A. Bentien,,M. Sakata, M. Nygren, P. T. Frederiksen, and B. B. Iversen, ” Hg0.04Zn3.96Sb3: Synthesis, Crystal Structure, Phase Transition, and Thermoelectric Properties”, Chem. Mater, vol.19, pp.6304–6311, 2007
指導教授 鄭憲清(Jason Shian-ching Jang) 審核日期 2014-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明