博碩士論文 101323044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:34.225.194.144
姓名 郭哲瑋(Zhe-Wei Kuo)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析
(The Optimized Simulation of OLED Planar Evaporation Heater Design and Chamber Flow Field)
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響
★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證
★ 以RTP硒化法探討CIS薄膜及元件特性之研究★ 局域性表面電漿共振效應應用於OLED出光增益之研究
★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究
★ 使用電子迴旋共振化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜之製程參數研究★ 以OES光譜進行ECR-CVD太陽電池用氫化氧化矽薄膜製成分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 有機發光二極體OLED具有自發光性、廣視角、高對比、低耗電、高反應速率、全彩化、製程簡單等優點,而熱蒸鍍為OLED製程中最重要的技術,依其蒸發源又分為點蒸鍍、線蒸鍍以及面蒸鍍,前二者由於材料成本耗費太大,近年來又以面蒸發源共蒸鍍技術為各大廠商研發之重點。本論文目的在於設計面型共蒸鍍驗證平台,以下有5點指標為本論文研究之目標:(1).面型蒸鍍加熱器面積325×435mm2 (2).操作溫度:500℃ (3).穩態溫度均勻度< 1% (在真空下1×10-5torr) (4).加熱時間600秒,溫度均勻度< 3%升溫速率>100℃/min (5).流場均勻性< 3%,以ANSYS有限元素法及Fluent流體計算力學模擬大面積蒸鍍加熱源之材質與紅外線燈管之陣列組合,研究快速升溫下面型蒸鍍加熱器的特性,並設計反射板,分析其對溫度均勻性以及升溫速率的影響,最後探討腔體內部流場分布情形,分析加熱器設計對於流場均勻性的影響,並設計不同的擋板,觀察其對流場的影響,期許能提昇面型蒸鍍之蒸鍍效率,並使研究成果作為R2R蒸鍍技術發展之基礎。
摘要(英) Since the surface evaporation technique is less cost compared to the point evaporation and the line evaporation technique, it is focused by the research and development from major OLED manufacturers recently. There are five major points to study: (1).The planar heater size is 325×435mm2 (2).The operating temperature is 500℃ (3).The temperature uniformity at steady state < 1% (the operating pressure is 3~6х10-5torr) (4). At heating time 600s, the temperature uniformity < 3% and heating rate >100℃/min (5). The flow field uniformity < 3%. In this research, we use the finite element analysis software, ANSYS and computational fluid dynamics, Fluent, to simulate the arrangement of the large-area evaporation deposition heating source in infrared lamp. Besides, we also design the reflector to get more uniform temperature on susceptor. At the end, we study the flow field to find out how the stream influence the deposition on glass substrate. These studies will be the base lines for the R2R (run to run) evaporation technology in the future.
關鍵字(中) ★ OLED
★ 面型蒸鍍
★ 燈管加熱器
關鍵字(英) ★ OLED
★ Surface evaporation
★ Infrared lamp
論文目次 中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
符號說明 xii
第一章 緒論 1
1-1 前言 1
1-2 研究背景及動機 3
1-3 文獻回顧 11
1-4 各章提要 13
第二章 理論介紹 15
2-1 OLED介紹 15
2-1-1 OLED簡介 15
2-1-2 OLED技術趨勢與發展 17
2-1-3 OLED市場概況 25
2-2鹵素燈管加熱器介紹 27
2-2-1 鹵素燈管加熱器簡介 27
2-2-2 熱輻射原理 35
2-2-3 相關廠商 49
第三章 分析軟體介紹 52
3-1 ANSYS有限元素法 52
3-2 Fluent計算流體力學 62
3-3 軟體收斂性 73
3-4 軟體差異性 75
第四章 實驗步驟與結果討論 77
4-1 實驗模型 77
4-2 實驗步驟 81
4-3 數據分析方法 82
4-4 結果與討論 86
4-4-1 支架材料分析 87
4-4-2 載盤材料分析 88
4-4-3 加熱器水平間距分析 90
4-4-4 加熱器與上蓋間距分析 93
4-4-5 六區段控溫分析 96
4-4-6 升溫速率分析 100
4-4-7 ANSYS vs Fluent分析 103
4-4-8 反射板分析 106
4-4-9 腔體流場分析 111
4-4-10 擋板分析 113
第五章 結論 117
參考文獻 119
參考文獻 [1] Lighting Research and Development Building Technologies Program, “Getting SSL to market”, Solid-State Lighting Workshop, Phoenix, U.S.A., January 2007.
[2] 劉曜彰和曾美榕,「OLED 照明光源發展現況」,工研院電子報,第10005期,2011年5月。
[3] 林晉聲,「未來照明新星-OLED Lighting-技術趨勢與瓶頸」,顯示器智庫,1-11頁,2011年8月。
[4] W. Brutting, Physics of Organic Semiconductors, 1st edition, Wiley, Germany, May 2006.
[5] W. Brütting and C. Adachi, Physics of Organic Semiconductors, 2nd edition, Wiley, Germany, Oct. 2012.
[6] E. Lee, “Simulation of the thin-film thickness distribution for an OLED thermal evaporation process”, Vacuum, Vol.83, pp.848-852, January 2009.
[7] 葉禮維,「真空鍍膜厚度均勻性的電腦模擬」,國立中央大學,碩士論文,2002年。
[8] 郭源欽,「運用電腦模擬蒸鍍修正板改善膜厚均勻度」,虎尾科技大學,碩士論文,2010年。
[9] J.Y. Koay, et al., “Influence of film thickness on the structural, electrical and photoluminescence properties of vacuum deposited Alq3 thin films on c-silicon substrate”, Thin Solid Films, Vol.517, pp.5298-5300, July 2009.
[10] R. Schmidt, et al., “Control of the thickness distribution of evaporated functional electroceramic NTC thermistor thin films”, Journal of Materials Processing Technology, Vol.199, pp.412-416, April 2008.
[11] 張銀夏,「蒸鍍製程之金屬膜厚分佈與均勻遮板設計研究」,長庚大學,碩士論文,2011年。
[12] Y.J. Lin, et al., “Deposition rate effect of Alq3 thin film growth: A kinetic Monte Carlo study”, Australian Journal of Chemistry, Vol.61, pp.600-609, March 2008.
[13] F.J. Zhang, et al., “Influence of evaporation conditions of Alq3 on the performance of organic light emitting diodes”, Journal of Physics D: Applied Physics, Vol.40, pp.4485-4488, July 2007.
[14] D.S. Jeong, et al., “Advantages of energetic cluster evaporation for organic light emitting devices”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol.22, pp.539-542, March 2004.
[15] 魏士勛,「利用熱蒸鍍法製備碲化鋅熱電薄膜之研究」,國立聯合大學,碩士論文,2013年。
[16] S. Jun, et al., “A study on the evaporation process with multiple point-sources”, Electronic Materials Letters, Vol.9, pp.7-11, October 2013.
[17] C.C. Lee, et al., “Effect of deposition rate on device performance and lifetime of planar molecule-based organic light-emitting diodes”, Journal of Physics D: Applied Physics, Vol.43, 075102(7pp), February 2010.
[18] L.W. Lai, et al., “Method of forming organic film”, U.S. patent, US8518487 B2, 2013.
[19] F.S. Steinbacher, et al., “Simplified, yellow, organic light emitting diode by co-evaporation of premixed dye molecules”, Organic Electronics, Vol.12, pp.911-915, June 2011.
[20] C.C. Hwang, “In-line manufacturing tool using belt-source evaporation techniques for large-sized OLED devices”, Journal of the Society for Information Display, Vol.16, pp.465-474, March 2008.
[21] Y.S. Tsai, et al., “Performance improvement of flexible organic light-emitting diodes with double hole transport layers by spin-coating and evaporation”, Japanese Journal of Applied Physics, Vol.48, 05213(3pp), May 2009.
[22] C.C. Hwang, et al., “Plane source and in-line deposition system for OLED manufacturing”, SID Symposium Digest Technical Papers, Vol.37, pp.1567-1570, June 2006.
[23] E. Fujimoto, et al., “OLED manufacturing system equipped by planar evaporation source“, SID Symposium Digest Technical Papers, Vol.41, pp.695-698, May 2010.
[24] W.H. Park and T. K. Kim, “Narrow band radiative solutions within a cubical enclosure filled with real gas mixtures", KSM International Journal, Vol.16, No. 2, pp.861-869, June2002.
[25] J. Choi, et al., “Temperature analysis for the point-cell source in the vapor deposition process”, KSME International Journal, Vol.18, pp.1680-1688, September 2004.
[26] N. Junichi, “A deposition source, an apparatus for producing organic EL element” Taiwan patent, TWI409350, 2013.
[27] E. Matsumoto, et al., “Method of organic material vacuum deposition and apparatus therefor”, U.S. patent, US8357241B2, 2013.
[28] F.Y. Sorrell, et al., “A global model for rapid thermal processors”, Semiconductor Manufacturing, IEEE Transactions, Vol.3, pp.183-188, November 1990.
[29] J.P. Zöllner, et al., “New lamp arrangement for rapid thermal processing”, Applied Surface Science, Vol.69, pp.193-197, May 1993.
[30] J. Liu and Y. Zheng, “Design of off-axis two reflecting system for parallelism calibration of two axes”, ICM 2011, pp.40-44, Taksim, Istanbul, September 2011.
[31] C.Y. Tsai, “Design and analysis of reflector for uniform light-emitting diode illuminance”, Journal of the Optical Society of America. A, Vol.30, pp.993-1001, May 2013.
[32] M.H. Andreasson, et al., “Porphyrin doping of Alq3 for electroluminescence”, Current Applied Physics, Vol.8, pp.163-166, March 2008.
[33] P. Pope, et al., “Electroluminescence in organic crystals”, The Journal of Chemical Physics, Vol.38, pp.2042, December 1962.
[34] W. Helfrich and W.G. Schneider, “Recombination radiation in anthracene crystals”, Physical Review Letters, Vol.14, pp.229, February 1965.
[35] D.F. Williams and M. Schadt, “A simple organic electroluminescent diode”, Proceedings of the IEEE, Vol.58, pp.476, March 1970.
[36] C.W. Tang and S.A. VanSlyke, “Organic electroluminescent diodes” Applied Physics Letters, Vol. 51, pp.913, July 1987.
[37] J.H. Burroughes, et al., “Light-emitting diodes based on conjugated polymers”, Nature, Vol.347, pp.539-541, September 1990.
[38] M.M. Lu and P. Ngai, “OLED requirements for solid-state lighting”, Frontline Technology, Information Display 10/10, pp.10-13, 2010.
[39] G. Mueller, Electroluminescence I (Semiconductor and Semimetals) Volume 64, Academic Press, San Diego, October 1999.
[40] J.W. Park, et al., “Large-area OLED lightings and their applications”, Semiconductor Science and Technology, Vol.26, 034002 (9pp), February 2011.
[41] 張軍杰和楊鑄,「全球OLED產業發展現狀及趨勢」,現代顯示,第113期,25-30頁,2010年6月。
[42] P. Matyba, et al., “Graphene and mobile ions: The key to all-plastic, solution-processed light-emitting devices”, ACS Nano, Vol.4, pp.637-642, February 2010.
[43] J. Kim, et al., “Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition”, Applied Physics Letters, Vol.98, 091502(3pp), March 2011.
[44] T. Kobayashi, et al., “Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process”, Applied Physics Letters, Vol.102, 023112(4pp), January 2013.
[45] Y. Galagan, et al., “ITO-free flexible organic solar cells with printed current collecting grids”, Solar Energy Materials & Solar Cells, Vol.95, pp.1339–1343, May 2011.
[46] R.R. Søndergaard, et al., “Roll-to-roll fabrication of large area functional organic materials”, Journal of Polymer Science Part b: Polymer Physics, Vol.51, pp.16-34, January 2013.
[47] H.J. van de Wiel, et al., “Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices”, Nanotechnology, Vol.24, pp.484014, November 2013.
[48] J.S. Yu, et al., “Transparent conductive film with printable embedded patterns for organic solar cells”, Solar Energy Materials & Solar Cells, Vol.109, pp.142–147, February 2013.
[49] M.C. Tam, et al., “Surface-plasmon-enhanced photoluminescence from metal-capped Alq3 thin Films”, Applied Physics Letters, Vol.95, 051503(3pp), August 2009.
[50] C.Y. Cho, et al., “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles”, Applied Physics Letters, Vol.98, 051106(3pp), February 2011.
[51] A. Kumar, et al., “Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon”, Organic Electronics, Vol.13, pp.159-165, January 2012.
[52] J.S. Jung, et al., “Luminescence variation of organic Alq3 nanoparticles on surface of Au nanoparticles and graphene”, Synthetic Metals, Vol.162, pp.1852-1857, December 2012.
[53] S.H. Chen, et al., “Enhanced luminescence efficiency by surface plasmon coupling of Ag nanoparticles in a polymer light-emitting diode”, Optics Express, Vol.19, pp.16843-16850, August 2011.
[54] Y. Xiao, et al., “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles”, Applied Physics Letters, Vol.100, 013308(4pp), January 2012.
[55] S.R. Kim, et al., “Effects of argon and oxygen flow rate on water vapor barrier properties of silicon oxide coatings deposited on polyethylene terephthalate by plasma enhanced chemical vapor deposition”, Thin Solid Films, Vol.518, pp.1929–1934, February 2010.
[56] N. Kim, “Fabrication and characterization of thin-film encapsulation for organic electronics”, School of Mechanical Engineering Georgia Institute of Technology, Ph.D. Thesis, 2009.
[57] A. Kirubanandham and S. Basu, “On characterization of mechanical deformation in flexible electronic structures”, Agilent Technologies, Inc., USA, 5991-1040EN(8pp), August 2012.
[58] B.J. Kim, “Electrical failure and damage analysis of multi-layer metal films on flexible substrate during cyclic bending deformation”, 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Incheon, Korea, July 2011.
[59] D.R. Cairns and G.P. Crawford, “Electromechanical properties of transparent conducting substrates for flexible electronic displays”, Proceedings of the IEEE, Vol.93, pp.1451-1458, August 2005.
[60] K. Alzoubi, et al., “Experimental and analytical studies on the high cycle fatigue of thin film metal on PET substrate for flexible electronics applications”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol.1, pp.43-51, January 2011.
[61] H. Chen, et al., “Simulation of the organic thin film thickness distribution for multi-source thermal evaporation process”, Vacuum, Vol.85, pp.448-451, September 2010.
[62] M. Eritt, et al., “OLED manufacturing for large area lighting applications”, Thin Solid Films, Vol.518, pp.3042-3045, March 2010.
[63] T. Gavrilko, et al., “FTIR spectroscopic and STM studies of vacuum deposited aluminium (III) 8-hydroxyquinoline thin films”, Journal of Molecular Structure, Vol.704, pp.163-168, October 2004.
[64] 詹逸民,「高效能有機發光元件製作技術之研究」,國立成功大學,碩士論文,2004年。
[65] 陳金鑫和黃孝文,OLED:有機電激發光材料與元件,五南出版社,2005年。
[66] T. Atsushi, et al., “Evaporation device”, Taiwan patent, TWI321593, 2010.
[67] Harison Toshiba Lighting Corp., “Infared Halogen Heater”, User guide.
[68] Ushio, “Halogen Heater: high efficiency near infrared heating”, User guide.
[69] G. Wyszecki and W.S. Stiles, Color Science: Concept and Methods, Quantitative Data and Formulae, 2nd edition, Wiley, New York, September 1982.
[70] R.S. Berns, Billmeyer and Saltzman′s Principles of Color Technology, 3rd edition, Wiley, New York, March 2000.
[71] L. Stroebel, et al., Basic Photographic Materials and Processes, 2nd edition, Focal Press, New York, March 2000.
[72] M. Planck, "On the law of distribution of energy in the normal spectrum", Annalen der Physik, Vol.4, p.553, 1901.
[73] J.J. Brehm, and W.J. Mullin, Introduction to the Structure of Matter: A Course in Modern Physics, 1st edition, Wiley, New York, January 1989.
[74] J. Stefan, “Über die Beziehung zwischen der Wärmestrahlung und der Temperatur, in: Sitzungsberichte der mathematisch- naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften”, Bd.79, pp.391-428, 1879.
[75] L. Boltzmann, ”Ableitung des Stefan′schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie, in: Annalen der Physik und Chemie”, Bd.22, pp.291-294, 1884.
[76] P. Frank, et al., Fundamentals of Heat and Mass Transfer, 6th edition, Wiley, U.S.A., 2007.
[77] M.J. Turner, et al., “Stiffness and deflection analysis of complex structures”, Journal of the Aeronautical Sciences, Vol.23, pp.805-823, September 1956.
[78] 丁毓峰等,有限元分析完全手冊,電子工業出版社,中國北京,2011年1月。
[79] 許京荊,ANSYS 12.0軟體培訓─熱分析,ANSYS軟件華東地區培訓中心,中國上海,2010年5月。
[80] S. Moaveni, Finite Element Analysis: Theory and Application with ANSYS, 3rd edition, Pearson Education Inc., USA, 2008.
[81] H.W. Jackson, et al., "Conductive sphere in a radio frequency field: Theory and applications to positioners, heating, and noncontact measurements”, Journal of Applied Physics, Vol.79, pp.3370-3384, December 1995.
[82] S.V. Patankar and D.B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows”, International Journal of Heat and Mass Transfer, Vol.15, pp.1787-1806, October 1972.
[83] Fluent Inc., Fluent 6.0 Documentation, 2001.
[84] ANSYS, Inc., ANSYS Fluent 12.0 Theory Guide, 2009.
[85] J. Tu, et al., Computational Fluid Dynamics: A Practical Approach, Elsevier Inc., New York, November 2007.
[86] G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1967.
指導教授 利定東(Ting-Tung Li) 審核日期 2014-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明