參考文獻 |
[1] P.K. Bondyopadhyay,” Moore′s law governs the silicon revolution”, IEEE, Vol.
86,Issue: 1, pp. 78-81, (1998).
[2] K. Rupp and S. Selberherr, “The economic limit to moore’s law,”Proceedings of
the IEEE, vol. 98, no. 3, pp. 351–353, (2010).
[3] G. K. Celler and S. Cristoloveanu, “Frontiers of silicon-on-insulator”, Journal of
Applied Physics, Vol. 93, Issue 9, pp. 4955-4978, (2003).
[4] 莊達人,VLSI 製造技術,五版,高立圖書有限公司,臺北縣,(2002)。
[5] J. B. Kuo and K.-W. Su, CMOS VLSI Engineering: Silicon-on-Insulator (SOI),Kluwer
Academic Publishers, Boston, (1998).
[6] 李隆盛,「非正統之金氧半導體場效電晶體」,電子與材料雜誌, 14,
pp.80-85,(2002).
[7] J.P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI ,Springer Science
Business Media, Inc., New York, (2004)
[8] M. Bruel, “Silicon-on-insulator material technology”, Electronics Letters,
31,p.95.(1995)
[9] M. Bruel, “Application of hydrogen ion beams to Silicon on Insulator material
technology”,Nucl. Instrum. Methods Phys., 108 , pp. 313–319,(1996).
[10] B. Aspar, M. Bruel, H. Moriceau et al.,” Basic mechanisms involved in the
Smart-Cut(R) process“,Microelectron. Engng., 36 ,pp. 233–240,(1997).
[11] Q.-Y. Tong, R. Scholz, and U. Gosele, and T.-H. Lee, L.J. Huang, Y.-L. Chao, and
T.Y. Tan, "A smarter-cut approach to low temperature silicon layer transfer", Appl.
Phys. Lett. 72, PP. 49-51,(1998).
[12] Q. Y. Tong, T. H. Lee, P. Werner, U. Gosele, R. B. Bergmann, and J.H. Werner, J.,
“Fabrication of Single Crystalline SiC Layer on High Temperature
Glass”,Electrochem. Soc., 144,p.111-113, (1997).
[13] E. Jalaguier, B. Aspar, S. Pocas, J. F. Michaud, M. Zussy, A. M. Papon, and
M.Bruel, “Transfer of 3 in GaAs film on silicon substrate by protonimplantation
process”, Electron. Lett., 34 p. 408-409, (1998).
[14] U. M. Gosele and Q. Y. Tong, IEEE 12th International Conference of InP and
related materials, 9-12, Williamsburq, VA, USA ,(2000).
[15] M. Bruel, B. Aspar, H. Moriceau, E. Jalaguier, and Lagahe, Electrochem.
Soc.Proceeding of the Third International Symposium on Defect in Silicon,78
-Pennington, NJ, USA, Vol. 99-1, pp. 203-214 ,(1999).
[16] Y. Tu and J. Tersoff, Phys. Rev. Lett. 84, 4393 (2000).
[17] von Herrn Ionut Radu, “Layer transfer of semiconductors and complex oxides by
helium and/or hydrogen implantation and wafer bonding”, Martin Luther University,
Ph.D dissertation, pp.77-88,( 2003).
[18] J.-P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI, 3rd
Edition,Springer Science Business Media Inc., New York, (2004).
[19] Q.Y. Tong and U. M. Gosel , Semiconductor Wafer Bonding: Science and
Technology, John Wiley & Sons, Inc., New York, (1999).
[20] J. H. Stathis and E. Cartier, Phys. Rev. Lett. 72, 2745 (1994).
[21] J. B. Lasky, et al., “Silicon-on-Insulator (SOI) by Bonding and
Etch-Back”,Electron Devices Meeting, 1985 International, Vol. 31, pp. 684-687,
(1985).
[22] H. Habuka, et al., “Roughness of Silicon Surface Heated in Hydrogen
Ambient”,Journal of The Electrochemical Society, Vol. 142, Issue 9 pp. 3092-3098,
(1995).
[23] T. Yonehara and K. Sakaguchi, “ELTRANR; Novel SOI Wafer
Technology”,JSAP International, No. 4, pp. 10-16, (2001).
[24] S. S. Iyer and A. J. Auberton-Herv′e, “Silicon Wafer Bonding Technology for
VLSI and MEMS Applications”, Inspec , London, (2002).
[25] M. Burel, United States Patent, Patent Number:5374564.
[26] C. Maleville and C. Mazure, “Smart-CutR Technology: from 300mm Ultrathin
SOI Production to Advanced Engineered Substrates”, Solid-State Electronics, Vol.
48, Issue 6, pp. 1055-1063, (2004).
[27] Michael Quirk, Julian Serda, Semiconductor manufacturing technology, Upper
Saddle River, NJ : Prentice Hall, (2001).
[28] H. Xiao 著,半導體製程技術導論,羅正忠和張鼎張譯,三版,臺灣培生教
育出版,臺北市,(2007)。
[29] H. Wu, J.Cargo and M. White, “Characterization of Various Etching Techniques
for Gate Level Failure Analysis and Substrate Decoration for Advanced Cu/low k
Technologies”, Physical and Failure Analysis of Integrated Circuits, 2005. IPFA
2005. Proceedings of the 12th International Symposium on the, pp. 242-248,
Singapore, (2005).
[30] C. H. Seager and D. S. Ginley, “Studies of the hydrogen passivation of silicon
grain boundaries”, Journal of Applied Physics, Vol. 52, Issue 2, pp. 1050-1055,
(1981).
[31] J. I. Pankove and N. M. Johnson., “Hydrogen in Semiconductors”,
Semiconductors and Semimetetals, 34 , NY, (1991).
[32] B. Sun et al., “Vibrational Lifetimes of Hydrogen in Silicon”, Hydrogen in
Materials and Vacuum System, pp. 67-73 ,(2003).
[33] S. Estreicher et al., “First-principles calculations of vibrational lifetimes in
silicon ”, Texas Tech University, (2006).
[34] Eugene E. Haller, “Hydrogen in crystalline semiconductors”, Semicond. Sci.
Technol., 6, pp.73-84, (1991).
[35] A. Y. Usenko and W. N. Carr, “Blistering on Silicon Surface Caused by Gettering
of Hydrogen on Post-Implantation Defects”, Mat. Res.Soc. Symp. Proc., Vol. 681E,
pp.I331-336, (2001).
[36] Jing Wang et al., “Microstructure evolution of hydrogen-implanted silicon during
the annealing process”, Microelectronic Engineering, 66, pp. 314-319,( 2003).
[37] S. Romani and J.H. Evans, “Platelet Defects in Hydrogen Implanted Silicon”,
Nucl. Instr and Meth. in Phys. Res. B, 44, pp. 313-317, (1990).
[38] G. F. Cerofolini, et al., “Hydrogen-related complexes as the stressing species in
high-fluence, hydrogen-implanted, single-crystal silicon”, Physical Review B, Vol.
46, Issue 4, pp. 2061-2070, (1992).
[39] M. Gao, et al., “A transmission electron microscopy study of microstructural
defects in proton implanted silicon”, Journal of Applied Physics, Vol. 80, Issue 8,
pp. 4767-4769, (1996).
[40] C. G. Van de Walle, et al., “Theory of hydrogen diffusion and reactions in
crystalline silicon”, Physical Review B, Vol. 39, Issue 15, pp. 10791-10808, (1989).
[41] KJ. Chang and DJ Chadi, “Hydrogen bonding and diffusion in crystalline silicon”,
Physical Review B, Vol.40, pp.644-653, (1989).
[42] Bo Chen, “Mechanisms of layer-transfer related to silicon-on-insulator
structures”, New Jersey Institute of Technology, Ph.D. Dissertation, (2004).
[43] Jing Wang et al., “Microstructure evolution of hydrogen-implanted silicon during
the annealing process”, Microelectronic Engineering, 66, pp. 314-319, (2003).
[44] B. Tuttle, Phys. Rev. B 60, 2631 (1999).
[45] S. N. Rashkeev, M. Di Ventra, and S. T. Pantelides, Appl.Phys. Lett. 78, 1571 (2001)
[46] B. J. Mrstik and R. W. Rendell, IEEE Trans. Nucl. Sci.38, 1101 (1991); R. E.
Stahlbush, A. H. Edwards, D. L.Griscom, and B. J. Mrstik, J. Appl. Phys. 73, 658
(1993). |