博碩士論文 101323048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.229.117.123
姓名 陳柏璋(Po-chang Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 A-site與B-site摻雜對於SrCeO3鈣鈦礦材料特性影響
(A-site and B-site Doped Effect on the SrCeO3 Perovskite Material Properties)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鈣鈦礦結構鍶鈰氧化物(strontium-cerium oxides)具有高的質子與電子傳導率,故廣泛應用於質子傳輸膜(Hydrogen Transport Membrane, HTM)、氫氣感測器與質子傳輸型固態氧化物燃料電池電解質材料。許多研究都著重於摻雜異價元素(3+)於B-site對於材料導電性與化學穩定性之影響,但摻雜於A-site對材料特性影響卻鮮少討論。本論文主要探討不同位置摻雜對於SrCeO3材料晶格變化、質子與電子傳導率、化學穩定性的影響。
本研究選擇鉀元素(K+)摻雜於A-site、釔元素(Y3+)摻雜於B-site,其材料化學式可寫成SrCeO3、SrCe0.95Y0.05O3-δ、Sr0.95K0.05CeO3-δ與Sr0.95K0.05Ce0.95Y0.05O3-δ四種材料。材料合成利用固態反應法 (Solid State Reaction, SSR)來製備。以X光粉末繞射儀(XRD)分析材料相與結構的變化,場發掃描式電子顯微鏡(FE-SEM)觀察材料表面形貌;利用兩點式電阻量測法分別在RH 1%與RH 30%氫氣氣氛下進行電導率測試;化學穩定性則在600℃、1 atm CO2氣氛下,分別進行2、4、8與16小時穩定性測試。
由XRD結果顯示,四種材料經1250℃煆燒12小時後可獲得單一鈣鈦礦結構,並無其他雜相生成;經過1550℃高溫燒結後,所有材料孔隙率皆低於4%。化學穩定性方面,四種材料經過16小時均以分解成SrCO3與CeO2氧化相,顯示不同位置摻雜無助於提升材料之化學穩定性。在導電性方面,Sr0.95K0.05CeO3-δ材料於900℃於濕氫氣氣氛下(RH 30%)具有較高的導電率,可達到0.1527 S∙cm-1。
摘要(英) Strontium-cerium oxides can be widely applied to hydrogen transport membranes (HTMs),hydrogen sensors and electrolyte materials of proton-conducting solid-oxide fuel cells because their relatively high electrical and protonic conductivities. Many investigations have focused on different valance of the dopants on B-site to the effect of material conductivity and chemical stability, but different valance of the dopants on A-site effect to material properties rarely be discussed. This essay focuses on different location of doping effect into lattice deformation in perovskite material protonic and electrical conductivities.
In this study we choose potassium to dope A-site of strontium creates and yttrium to the dope B-site of strontium creates. The material of the formula could be written SrCeO3, SrCe0.95Y0.05O3-δ, Sr0.95K0.05CeO3-δ and Sr0.95K0.05Ce0.95Y0.05O3-δ. Material was prepared by solid state reaction. The crystal structure, phase and microstructures were identified using X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM). Electrical conductivity were measured in RH1% and RH30% hydrogen atmosphere at 550℃ to 900℃ by two-point probe method. Chemical stability were examined under CO2 atmosphere at 600℃ for 2, 4, 8 and 16 hours, respectively. Hydrogen flux of material was examined by gas chromatography.
Preliminary results from XRD showed the pure perovskite structure and no detectable impurity phases when powders were calcined at 1250℃ for 12 hours; porosities of all material were less than 4% when pellets were sintered at at 1550℃. The results from chemical stability showed a different location doped not to enhance the chemical stability of the material when perovskite could be decomposed into SrCO3 and CeO2 oxide phase. In terms of electrical conductivity, the conductivity of Sr0.95K0.05CeO3-δ could be achieved with 0.1527 S∙cm-1 in RH 30% hydrogen atmosphere at 900℃.
關鍵字(中) ★ 鈣鈦礦
★ 質子傳輸膜
★ 化學穩定性
★ 導電率
關鍵字(英) ★ Perovskite
★ Hydrogen transport membranes
★ Chemical Stability
★ Conductivity
論文目次 摘 要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 簡 介 1
1-1鈣鈦礦結構[1] 1
1-2鈣鈦礦氧化物的應用於質子傳輸電解質材料 2
1-2-1質子傳導機制 4
1-3鈣鈦礦氧化物的應用於質子傳輸膜 5
1-3-1質子傳輸膜之應用條件 6
1-3-2質子傳輸膜工作原理 7
1-4研究動機 8
第二章 實驗方法與設備 13
2-1 粉體及試片製備 13
2-1-1 粉體製備 13
2-1-2 坯體的製備 14
2-2 材料性質分析 15
2-2-1 X光繞射分析(XRD) 15
2-2-2 坯體吸水率(Water Absorption)與孔隙率(Porosity) 15
2-2-3 SEM表面形貌分析 16
2-3 化學穩定性分析 17
2-4 導電率量測 17
第三章 實驗結果與討論 26
3-1 X光繞射分析 26
3-2 SEM粉體粒徑與表面形態分析 30
3-3化學穩定性分析 31
3-4導電率分析 33
第四章 總結 47
參考文獻 48
參考文獻 [1] T. Ishihara, Perovskite Oxide for Solid Oxide Fuel Cells: Springer US, 2009.
[2] M. Matsuka, T. Sakai, H. Matsumoto, R. D. Braddock, I. E. Agranovski, and T. Ishihara, "Effects of hydrogen on phase stability of ytterbium doped strontium cerates," Materials Letters, vol. 64, pp. 833-835, 2010.
[3] X. Ding, J. Gu, D. Gao, G. Chen, and Y. Zhang, "Preparation of supported SrCeO3-based membrane by spin coating method," Journal of Power Sources, vol. 195, pp. 4252-4254, 2010.
[4] J. H. Xu, J. Xiang, H. Ding, T. Q. Yu, J. L. Li, Z. G. Li, et al., "Synthesis and electrical properties of BaCeO3-based proton conductors by calcinations of metal-polyvinyl alcohol gel," Journal of Alloys and Compounds, vol. 551, pp. 333-337, 2013.
[5] C. Zhang, S. Li, X. Liu, X. Zhao, D. He, H. Qiu, et al., "Low temperature synthesis of Yb doped SrCeO3 powders by gel combustion process," International Journal of Hydrogen Energy, vol. 38, pp. 12921-12926, 2013.
[6] 黃鎮江, 燃料電池, 3 ed. 滄海書局, 2008.
[7] M. Y. Cai, H. X. Luo, Z. Li, A. Feldhoff, J. Caro, and H. H. Wang, "Preparation and hydrogen permeation properties of BaCe0.95Nd0.05O3−δ membranes," Chinese Chemical Letters, vol. 19, pp. 1256-1259, 2008.
[8] M. S. Islam, "Ionic transport in ABO3 perovskite oxides: a computer modelling tour," Journal of Materials Chemistry vol. 10, pp. 1027-1038, 2000.
[9] X. Wei and Y. S. Lin, "Protonic and electronic conductivities of terbium doped strontium cerates," Solid State Ionics, vol. 178, pp. 1804-1810, 2008.
[10] N. W. O. a. T. M. Nenoff, "Membranes for Hydrogen Separation," Chem. Rev., vol. 107, pp. 4078-4110, 2007.
[11] E. D. W. a. M. C. Williams, "Hydrogen Production from Fossil Fuels with High Temperature Ion Conducting Ceramics," The Electrochemical Society Interface •Fall, pp. 32-37, 2004.
[12] T. Yajima, H. Iwahara, H. Uchida, and K. Koide, "Relation between proton conduction and concentration of oxide ion vacancy in SrCeO3 based sintered oxides," Solid State Ionics, vol. 40–41, Part 2, pp. 914-917, 1990.
[13] H. Uchida, H. Yoshikawa, T. Esaka, S. Ohtsu, and H. Iwahara, "Formation of protons in SrCeO3-based proton conducting oxides. Part II. Evaluation of proton concentration and mobility in Yb-doped SrCeO3," Solid State Ionics, vol. 36, pp. 89-95, 1989.
[14] "Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, And Apparent Specific Gravity of Fired Whiteware Products,ASTM C373-88," ed: Jerry Delgado, 2006.
[15] T. E. P. A. Adolfo Franco Jr., Emília Celma de Oliveira Lima , Eloisa da Silva ,Nunes •Vivien Zapf, "Enhanced magnetization of nanaoparticle of MgxFe(3-x)O4(0.5≦x≦1.5)synthesized by combustion reaction," Applied Physics A:Materials Science & Processing, vol. 94, pp. 131-137, 2009.
[16] M. M. Elbaccouch, S. Shukla, N. Mohajeri, S. Seal, and A. T Raissi, "Microstructural analysis of doped-strontium cerate thin film membranes fabricated via polymer precursor technique," Solid State Ionics, vol. 178, pp. 19-28, 2007.
[17] A. N. Shirsat, K. N. G. Kaimal, S. R. Bharadwaj, and D. Das, "Thermodynamic stability of SrCeO3," Journal of Solid State Chemistry, vol. 177, pp. 2007-2013, 2004.
[18] I. I. Barin, Thermochemical Data of Pure Substances, Third ed., 2008.
指導教授 李雄(Shyong Lee) 審核日期 2014-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明