博碩士論文 101323054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.232.133.141
姓名 林冠任(Guan-Ren Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用脈衝雷射沉積技術成長PEMFC鉑奈米顆粒觸媒
(Growth of Pt nanoparticle for proton-exchange-membrane fuel cells by pulsed-laser deposition)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究採用脈衝雷射沉積法(Pulsed-laser deposition method, PLD)
製備鉑奈米顆粒於電極上,透過改變背景氣體壓力控制鉑奈米顆粒,從XRD 估算鉑粒徑與比較電化學活性表面積,得知背景氣體壓力在800mTorr 為最佳工作點。之後控制雷射發數成長不同鉑擔載量,在組裝電池的測試中,應用於陽極鉑擔載量為24 μg cm-2 時在0.6 V 下的電流密度可達到1366 mA/cm2,優於商用(E-Tek) MEA 的性能,且因鉑擔載量大幅下降,陽極(Mass specific power density, MSPD)提升約9 倍。另外,陽極鉑擔載量為13 μg cm-2時在0.6 V 下的電流密度也有1032 mA/cm2,故陽極MSPD 高達47.61 kW/g。
使用PLD 製備的觸媒有較高的MSPD 的主要原因為,減少觸媒孤島效應的發生,而此效應在一般的商用觸媒容易發生,故從電池性能測試可以發現MSPD 比起商用觸媒有明顯的改善。針對表面結構觀察發現,鉑奈米顆粒具有分散性佳,且鉑顆粒大小可以控制在2-3 nm 左右,當鉑擔載量越高,鉑顆粒開始有聚集的現象,為MSPD 隨著鉑擔載量增加而下降的原因。而活性分析結果發現,氫吸附面積與ORR 活性隨鉑擔載量提高而下降,主要原因為顆粒聚集和顆粒尺寸的增加,而使得活性降低,大致上電化學活性測試與電池性能具有相同的趨勢。
摘要(英) Pulsed laser deposition (PLD) was used to prepare Pt nanoparticles on gas diffusion electrode by varying the Ar pressure in the dsposition chamber.
X-ray diffraction analysis and electrocatalytic activity of Pt nanoparticle indicate that the Ar pressure of 800 mTorr is the best operating point.The PLD catalysts was used at anode side of a polymer electrolyte membrane (PEM) fuel cell. With a Pt loading of 25 μg-Pt/cm2, current density
reaches 1366 mA/cm2 at 0.6 V, similar to commercial Pt/C at much higher Pt loading (200 μg-Pt/cm2). The mass specific power density(MSPD) increases about ten times as compared with commercial Pt/C. Even with lower Pt loading of 13 μg-Pt/cm2, the current density still have 1032 mA/cm2 .The
MSPD is 47.6 kW/g.
The primary reason that PLD catalysts show higher MSPD may be ascribed to reduced occurrence of island formation, which is common for traditional Pt/C catalysts.
TEM images indicate that the Pt nanoparticles have good dispersion. The size of the Pt nanoparticle is approximately 2-3 nm. Higher Pt loading causes Pt particles to aggregate. This is the main reason that MSPD decreases with increasing Pt loading. The electrochemical analysis found IV
electrochemical active surface area and ORR activity decrease with increasing platinum loading, due to Pt particle size increase and particle aggregation. In general, the trend of the electrochemical test result and fuel cell performance agree with each other.
關鍵字(中) ★ 脈衝雷射沉積法
★ 電化學活性表面積
★ 質量比功率密度
★ 質子交換膜燃料電池
★ 氧還原反應
關鍵字(英) ★ Pulsed laser deposition
★ PEM fuel cell
★ Mass specific power density
★ Electrochemical active surface area
★ Oxygen reduction reaction
論文目次 中文摘要.....................................................................................................I
英文摘要..................................................................................................III
致謝...........................................................................................................V
目錄..........................................................................................................VI
表目錄......................................................................................................IX
圖目錄.......................................................................................................X
一、緒論....................................................................................................1
1-1. 燃料電池介紹................................................................................2
1-2. 質子交換膜燃料電池....................................................................3
1-2.1 基本構造與原理..................................................................3
1-2.2 質子交換膜燃料電池發展展望..........................................6
1-3. 製備觸媒層方式..........................................................................11
1-3.1 薄膜法(Thin-film method).................................................12
1-3.2 電化學法(Electrochemical method)..................................16
1-3.3 氣相沉積法(Vapor deposition method).............................18
1-3.4 各方法發展近況................................................................20
1-4. 脈衝雷射沉積法成長鉑奈米顆粒文獻回顧..............................23
1-4.1 使用脈衝雷射沉積法有效減少鉑用量............................23
VII
1-4.2 改變背景氣體壓力對於奈米顆粒的影響........................25
1-4.3 化學穩定性對於鉑奈米顆粒大小的影響........................28
1-5. 研究目的....................................................................................29
二、實驗方法..........................................................................................30
2-1. 脈衝雷射沉積系統....................................................................31
2-1.1 脈衝雷射光源..................................................................31
2-1.2 脈衝雷射系統架設..........................................................31
2-1.3 基板與靶材......................................................................33
2-2. 鉑奈米顆粒製作方式................................................................33
2-2.1 最佳化鉑奈米顆粒尺寸..................................................33
2-2.2 最佳化鉑擔載量..............................................................33
2-3. 膜電極組製作方式....................................................................34
2.3.1 觸媒漿料調配................................................................34
2-3.2 MEA熱壓方式...............................................................34
2-4. 觸媒檢測方法............................................................................35
2-4.1 掃描式電子顯微鏡........................................................35
2-4.2 穿透式電子顯微鏡........................................................36
2-4.3 X光粉末繞射儀.............................................................37
2-4.4 觸媒活性分析................................................................39
VIII
2-4.5 X光光電子能譜儀.........................................................43
2-4.6 燃料電池測試................................................................45
三、結果與討論......................................................................................49
3-1. 利用脈衝雷射成長鉑奈米顆粒................................................49
3-1.1 背景氣體壓力對於顆粒大小的關係..............................49
3-1.2 不同背景氣體壓力大小之氫吸附面積比較..................52
3-1.3 雷射發數與鉑重量的關係..............................................53
3-2. 不同鉑擔載量應用於陽極端電池性能測試............................55
3-3. 不同鉑擔載量分析....................................................................58
3-3.1 不同鉑擔載量結構分析..................................................58
3-3.2 不同鉑擔載量活性分析..................................................66
3-3.2.1 CV分析結果..........................................................66
3-2.3.2 LSV分析結果........................................................68
3-3-3 鉑價態分析.....................................................................69
3-4. 長時間性能測試........................................................................75
四、結論與未來方向..............................................................................81
4-1. 結論............................................................................................78
4-2. 未來方向....................................................................................79
參考文獻..................................................................................................80
參考文獻 [1] 王智薇,「淺談新興能源科技產業─氫能與燃料電池」,產經
資訊,(2008).
[2] R. O’Hayre et al., “Fuel cell fundamentals”, John Wiley & Sons,
(2005).
[3] 黃鎮江,「燃料電池」,全華科技股份有限公司,(2005).
[4] http://www.cleantechinvestor.com/portal/fuel-cells/6455-fuel-cellhistory.
html
[5] Y. Wang et al., “A review of polymer electrolyte membrane fuel
cells:Technology, applications and needs on fundamental
research”, Applied Energy, 88, 981-1007 (2011).
[6] Y.F. Zhai et al., “The stability of Pt/C catalyst in H3PO4/PBI
PEMFC during high temperature life test”, J. Power Sources, 164,
126-133 (2007).
[7] J. Wu et al., “A review of PEM fuel cell durability:Degradation
mechanisms and mitigation strategies”, J. Power Sources, 184, 104-
119 (2008).
[8] A. Brouzgou et al., “Low and non-platinum electrocatalysts for
PEMFCs: Current status, challenges and prospects”, Applied
Catalysis B: Environmental, 127,371-388 (2012).
[9] H.A. Gasteiger et al., “Activity benchmarks and requirements for Pt,
Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs”,
Applied Catalysis environmental, 56, 9-35 (2005).
81
[10] S. Vengatesan et al., “High dispersion platinum catalyst using
mesoporous carbon support for fuel cells” Electrochimica Acta, 54,
856–861 (2008).
[11] L. Xiong, A. Manthiram, “High performance membrane-electrode
assemblies with ultra-low Pt loading for proton exchange membrane
fuel cells”, Electrochim. Acta , 50, 3200-3204 (2005).
[12] R.P. Ramasamy, Fuel Cells – Proton-exchange membrane fuel
cells | Membrane–Electrode Assemblies., U.S. Air Force
Research Laboratory, Panama City, USA, 789 (2009).
[13] http://www.hnei.hawaii.edu/research/fuel-cells/fuelfab
[14] J.H. Wee, K.Y. Lee, S.H. Kim, “Fabrication methods for low-Ptloading
electrocatalysts in proton exchange membrane fuel cell
systems”, J. Power Sources, 165, 667-677 (2007).
[15] H. Morikawa, N. Tsuihiji, T. Mitsui, and K. Kanamura,
“Preparation of membrane electrode assembly for fuel cell by
using electrophoretic deposition process”, J. Electrochem. Soc.,
151, 1733-1737 (2004).
[16] H. Kim, N.P. Subramanian, B.N. Popov, “Preparation of PEM fuel
cell electrodes using pulse electrodeposition”, J. Power Sources,
138, 14-24 (2004).
[17] D. Gruber, N. Ponath, J. M¨uller, F. Lindstaedt, “Sputter-deposited
ultra-low catalyst loadings for PEM fuel cells”, J. Power sources,
150, 67-72 (2005).
[18] M.S. Saha, A.F. Gull´, R.J. Allen, S. Mukerjee, “High performance
polymer electrolyte fuel cells with ultra-low Pt loading electrodes
82
prepared by dual ion-beam assisted deposition”, Electrochim. Acta,
51, 4680-4692 (2006).
[19] N. Cunningham, E. Irissou, M. Lefe`vre, M.-C. Denis, D. Guay
“PEMFC anode with very low Pt loadings using pulsed laser
deposition”, Electrochem. Solid-State Lett., 6, 125-128 (2003).
[20] D. B. Chrisey and G. K. Hubler, “Pulsed laser deposition of thin
films”, John Wiley & Sons, New York (1992).
[21] C. Hamel, S. Garbarino, E. Irissou, F. Laplante, M. Chaker, D. Guay
“Influence of the velocity of Pt ablated species on the structural and
electrocatalytic properties of Pt thin films”, Int. J. Hydrogen Energy,
35, 8486-8493 (2010).
[22] S. Garbarino, A. Pereira, C. Hamel, E. Irissou, M. Chaker, and D.
Guay “Effect of size on the electrochemical stability of Pt
nanoparticles deposited on gold substrate”, J. Phys. Chem., 114,
2980-2988 (2010).
[23] Qi Z., Kaufman A., “Low Pt loading high performance cathodes for
PEM fuel cells”, J. power sources, 113, 37-43 (2003).
[24] Antolini E., Giorgi L., Pozio A., Passalacqua E., “Influence of nafion
loading in the catalyst layer of gas diffusion electrodes for PEMFC”,
J. power source, 77, 136-142 (1999).
[25] Mahlon S.W., Judith A.V., Shimshon G., “Low Platinum loading
electrodes for polymer electrolyte fuel cells fabricated using
thermoplastic ionomers”, Electrochimica Acta, 40, 355-363 (1995).
[26] Frey Th., Linardi M., “Effects of membrane electrode assembly
preparation on the polymer electrolyte membrane fuel cell
83
performance”, Electrochimica Acta, 50, 99-105 (2004).
[27] A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini and L. Giorgi
“Comparison of high surface Pt/C catalysts by cyclic voltammetry”,
J. Power sources, 105, 13-19 (2002).
[28] M. Doña., et al, “Determination of the real surface area of Pt
electrodes by hydrogen adsorption using cyclic voltammetry”,
J. Chem. Educ., 77, 1195-1197 (2000).
[29] Arico A. S., Shukla A.K., Kim H., Park S., Min M., Antonucci V.,
“An XPS study on oxidation states of Pt and its alloys with Co and Cr
and its relevance to electroreduction of oxygen”, Applied Surface
Science, 172, 33-40 (2001).
[30] Shukla A.K., Neegat M., Parthasarathi Bera, Jayaram V., Hegde M.S.,
“An XPS study on binary and ternary alloys of transition metals with
platinized carbon and its bearing upon oxygen electroreduction in
direct methanol fuel cells”, J. Electroanal. Chem., 504, 111-119
(2001).
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2014-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明