博碩士論文 101323059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.133.12.172
姓名 陳旻聰(Ming-tsung Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 CZ法生長大尺寸藍寶石單晶之熱流場與溶質數值模擬研究
(Numerical Simulation of the Flow, Temperature, and Solute Fields for Growing the Larger Sapphire Crystal in Czochralski System)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 對晶體產業而言,柴式提拉法(Czochralski)是一項重要的關鍵技術。在近年工業的發展中,這項技術已經成為應用於生長大尺寸藍寶石晶體的方法之一。為了提升藍寶石單晶的生長品質,我們有必要深入了解長晶爐內部的整體熱傳與熔湯流動行為。然而這種生長較大尺寸晶體方法,受限於爐體內的高溫使我們無法直接去做實驗量測;除此之外,在長晶過程中容易產生化學雜質,使生長出的藍寶石單晶摻雜許多氣泡,進而影響晶體的光學性質與品質。在業界通常以調整長晶參數的方式進行製程優化,但是需花費許多人為控制時間,因此,我們必須用更有效的方式來獲得長晶參數與條件。本文運用有限元素法,且以準穩態的方式模擬藍寶石生長過程的熱場和流場的耦合行為、熔湯內部溶質流動的傳輸機制,進而去推論其與晶體內氣泡間的關係。
本研究結果發現,溫度場中的等溫線會受到強烈的浮力渦流扭曲變形,而渦流強度亦會隨熱源強度下降而減低;固液界面形狀會隨晶體長度增加而愈凸向熔湯,熔湯內部只存在一個浮力渦流。在非固定支承高度系統中,爐內輸入的熱源和晶體內溫度梯度會較固定支承系統的結果來得高,對長出晶體的完整度會有不良影響。當系統坩堝底部的形狀呈圓形,或在上爐室加裝由石墨碳纖製成的熱遮罩,會使整體晶體凸出率下降。當底部支承材料為氧化鋯球時,較不易發生坩堝底部晶體固化的結果,並使晶體界面較為平坦。
在CZ長晶系統中的溶質場模擬結果顯示,各階段熔湯內溶質濃度最大值位於坩堝側表面,並且發現溶質的分布明顯受到熔湯的流動所影響。另外,在固液界面附近的溶質濃度於靠近晶體中心軸有局部最大值,這表示著熔湯內雜質在中心軸附近堆積程度比起其他位置來得高。一般而言,當固液界面愈不穩定,氣泡愈容易摻入到晶體內部;而固液界面不穩定性與溶質在界面的組成過冷程度是呈正向關係,亦即當組成過冷程度愈大,會使固液界面愈不穩定。
本文模擬結果顯示,當系統內溶質濃度和晶體提拉速度愈大,界面產生溶質組成過冷的機會愈高,並且在中心軸附近的組成過冷程度較大,模擬得到的結果與實驗文獻結果相似。除此之外,長晶爐內部的溫度會影響生成雜質的多寡,故需要非常小心的控制,不宜太高。
摘要(英) The Czochralski method is one of important technologies for the crystal industry. For recently, it had been mainly applied for industrial larger size sapphire crystal growth. The thermal and flow transport play significant roles in CZ crystal growth, and it is hard to directly observed in experiments. Moreover, the grown sapphire single crystal is commonly accompanied by small bubbles which might affect the optical properties. Manual control for the amount and distribution of this kind chemical defects strongly depends on the trial experiences. Therefore, we must use a more efficient way to obtain growth parameters or conditions. This thesis is numerically investigated on both thermal-flow and solute transport phenomenon using the finite element method and quasi-steady approximation.
The results presented in this study show the effect of different positions of support, heat shield devices, different upper furnace chambers, different support materials, and different crucible bottom shapes. Strong buoyant flow distorts the isotherms in the melt, and the strength decreases when the power supply decreases. The deflection height of the melt-crystal interface increases, as the melt level goes down. The power supply and temperature gradient inside solid crystal increase, when the support is lifted up. This is not good for crystal quality. Besides, the crystal convexity decreases, when the crucible bottom shape is round or the heat shield device made by carbon fiber is adopted. Furthermore, it is more likely grow more flat crystal and no solidified crystal touched at the crucible bottom, as the ZrO2 bubble insulator of support is used.
Then, we used the solutions of thermal-flow field to discuss its influence on the solute field in CZ system. The results show that the maximum value solute concentration locates at the crucible sidewall and solute distribution strongly depends on the flow motion of molten melt. Besides, solutes are inclined to gather near the melt-crystal interface, and the local-maximum value located at the center sites. The gas bubbles are easily incorporated into solid crystal, as the melt-interface is not stable. The instability of crystallization front is proportional to the solute constitutional supercooling.
The results show the chance of constitutional supercooling increases, when the solute concentration in molten melt increases or pulling rate of system is larger. In addition, the degree of constitutional supercooling is larger particularly near the center sites. These computational results are consistent with the experimental results done by foreign researchers. The temperature degrees in the furnace also should be controlled carefully and we concluded that the heat shield system is better than the others. Based on these results, the crystal quality of sapphire is expected to be improved.
關鍵字(中) ★ 柴式晶體生長
★ 藍寶石單晶
★ 氣泡
★ 數值模擬
關鍵字(英) ★ Czochralski
★ crystal growth
★ sapphire
★  bubble
★ numerical simulation
論文目次 摘 要 I
Abstracts III
誌 謝 V
Table of Contents VI
List of Figures VIII
List of Tables XIII
Nomenclature XV
Chapter I Introduction 1
1-1 Aluminum Oxide Single Crystals (Al2O3) 1
1-2 Czochralski Growth Technology 2
1-3 Literature Review 3
1-3-1 Numerical Simulation of Sapphire Single Crystal 3
1-3-2 Transport and Distribution of Bubble Impurities 7
1-4 Motivation and Objectives 12
Chapter II Physical Model and Mathematical Formulations 20
2-1 Physical Model and Assumptions 20
2-2 Mathematical Formulations 21
2-3 Bubble Nucleation Mechanism 30
2-4 Segregation Process, Equilibrium Temperature, Solute Boundary Theory, and Constitutional Supercooling Criterion 31
Chapter III Numerical Solutions 41
3-1 Parameters Analysis 41
3-2 Quasi-Steady State Examination 42
3-3 Finite Element Method, Grid and Tolerance Test 43
3-3-1 Finite Element Method (FEM) 43
3-3-2 Grid and Tolerance Test 44
3-4 Solidification Analysis 45
3-5 Solving Steps 45
Chapter IV Results and Discussion 51
4-1 Analysis of Thermal-Flow Field with Different Growth Process in CZ System 51
4-2 Comparison of Different Growth Parameters and Conditions 54
4-2-1 Difference between Moved/ Fixed Support System 54
4-2-2 Difference between Heat Shield/ No Shield System 55
4-2-3 Difference between Vacuum and Argon System 56
4-2-4 Influence of Support Material 57
4-2-5 Influence of Crucible Bottom Shape 58
4-2-6 Difference between Surface/ Non Surface Tension System 60
4-3 Analysis of Solute Field of Different Growth Stages in CZ System 60
4-4 Analysis of Solute Field for Different Growth Conditions 62
4-4-1 Different Pulling Rate Systems 63
4-4-2 Influence of Different Furnace Temperature 63
Chapter V Conclusions and Future Works 109
Appendix 111
參考文獻 1. 陳俊宏, “泡生法生長氧化鋁單晶之數值模擬分析”, 國立中央大學機械工程研究所, 博士論文, 民國一O一年六月.
2. 吳東頤, “KY法生長大尺寸氧化鋁單晶之數值模擬分析”, 國立中央大學機械工程研究所, 碩士論文, 民國一O二年六月.
3. S. Toru, Z. Sakae, “Substrate-orientation dependence of GaN single-crystal films grown by metalorganic vapour phase epitaxy”, Journal of Applied Physics, Vol. 61, pp. 2533–2541 (1987).
4. D. C. Harris, F. Schmid, D. R. Black, E. Savrun, and H. E. Bates, “Factors that influence mechanical failure of sapphire at high temperature,” SPIE, Vol. 3060, pp. 226-235 (1997).
5. D. C. Harris, F. Schmid, J. J. Mecholsky, and Y. L. Tsai, “Mechanism of Mechanical Failure of Sapphire at High Temperature”, SPIE, Vol. 2286, pp. 16-25 (1994).
6. G. B. Stringfellow, “Organometallic Vapor Phase Epitaxy: Theory and Practice”, 1989.
7. M. L. Hitchamn, “Chemical Vapor Deposition: Principle and Application”, 1993.
8. Sugianto, R. A. Sani, P. Airfin, M. Budiman, and M. Barmawi, “Growth of GaN "lm on a-plane sapphire substrates by plasma-assisted MOCVD”, Journal of Crystal Growth, Vol. 221, pp. 311-315 (2000).
9. J. S. Son, K. H. Baik, Y. G. Seo, H. Song, J. H. Kim, S. M. Hwang, and T. G. Kim,” Optimal activation condition of nonpolar a-plane p-type GaN layers grown on r-plane sapphire substrates by MOCVD” , Journal of Crystal Growth, Vol. 326, pp. 98-102 (2011).
10. P. E. Tomaszewski, “Jan Czochralski - Father of the Czochralski method”, Journal of Crystal Growth, Vol. 236, pp. 1-4 (2006).
11. M. S. Akelrod, and F. J. Bruni, “Modern trends in crystal growth and new applications of sapphire”, Journal of Crystal Growth, ARTICLE IN PRESS (2012).
12. M. H. Tavakoli and H. Wilke, “Numerical study of induction heating and heat transfer in a real Czochralski system”, Journal of Crystal Growth, Vol. 275, pp. 85-89 (2005).
13. M. H. Tavakoli and H. Wilke, “Numerical investigation of heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth Part 1: non-rotating seed”, Crystal Research and Technology, Vol. 42, No. 6, pp. 544-557 (2007).
14. M. H. Tavakoli and H. Wilke, “Numerical investigation of heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth Part 2: rotating seed”, Crystal Research and Technology, Vol. 42, No. 7, pp. 688-698 (2007).
15. M. H. Tavakoli, “Numerical Study of Heat Transport and Fluid Flow of Melt and Gas during the Seeding Process of Sapphire Czochralski Crystal Growth”, Crystal Growth and Design, Vol. 7, No. 4, pp. 644-651 (2007).
16. M. H. Tavakoli, F. Samavat, and M. Babaiepour, “Influence of active afterheater on the induction heating process in oxide Czochralski systems”, Crystal Research and Technology, Vol. 43, No. 2, pp. 145-151 (2008).
17. M.H. Tavakoli, “Numerical study of heat transport and fluid flow during different stages of sapphire Czochralski crystal growth”, Journal of Crystal Growth, Vol. 310, pp. 3107-3112 (2008).
18. M. H. Tavakoli, E. Mohammadi-Manesh, and S. Omid, “Simulation of temperature and flow fields in an inductively heated melt growth system”, Crystal Research and Technology, Vol. 45, No. 11, pp. 1117-1122 (2010).
19. Jyh-Chen Chen, and Chung-Wei Lu, “Influence of the crucible geometry on the shape of the melt-crystal interface during growth of sapphire crystal using a heat exchanger method”, Journal of Crystal Growth, Vol. 266, pp. 239-245 (2004).
20. M. H. Tavakoli, H. Wilke and N.Crnogorac, “Influence of the crucible bottom shape on the heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth”, Crystal Research and Technology, Vol. 42, No. 12, pp. 1252-1258 (2007).
21. M. H. Tavakoli, E.M.Manesh, A.Ojaghi, “Influence of crucible geometry and position on the induction heating process in crystal growth systems”, Journal of Crystal Growth, Vol. 311, pp. 4281-4288 (2009).
22. W. J. Lee, Y. C. Lee, H. H. Jo, Y. H. Park, “Effect of crucible geometry on melt convection and interface shape during Kyropoulos growth of sapphire single crystal”, Journal of Crystal Growth, Vol. 324, pp. 248-254 (2011).
23. C. Chen, H. J. Chen, W. B. Yan, C. H. Min, H. Q. Yu, Y. M. Wang, P. Cheng, and C. C. Liu, “Effect of crucible shape on heat transport and melt-crystal interface during the Kyropoulos sapphire crystal growth”, Journal of Crystal Growth, Vol. 388, pp. 29-34 (2014).
24. S. E. Demina, E. N. Bystrova, M. A. Lukanina, V. M. Mamedov, V. S. Yuferev, E. V. Eskov, M. V. Nikolenko, V. S. Postolov, and V. V. Kalaev, “Numerical analysis of sapphire crystal growth by the Kyropoulos technique”, Journal of Crystal Growth, Vol. 30, pp. 62-65 (2007).
25. S. E. Demina, E. N. Bystrova, V. S. Postolov, E. V. Eskov, M. V. Nikolenko, V. S. Yuferev, D. A. Marshanin , and V. V. Kalaev, “Use of numerical simulation for growing high-quality sapphire crystals by the Kyropoulos method”, Journal of Crystal Growth, Vol. 310, pp. 1443-1447 (2008).
26. C. W. Lu, and J. C. Chen, “Numerical simulation of thermal and mass transport during Czochralski crystal growth of sapphire”, Crystal Research and Technology, Vol. 45, pp.371 (2010).
27. C. W. Lu, J. C. Chen, C. H. Chen, C. H. Chen, W. C. Hsu, and C. H. Liu, “Effect of RF coil position on the transport process during the stages of sapphire Czochralski crystal growth”, Journal of Crystal Growth, Vol. 312, pp. 1074-1079 (2010).
28. S. E. Demina, and V. V. Kalaev, “3D unsteady computer modeling of industrial scale Ky and Cz sapphire crystal growth”, Journal of Crystal Growth, Vol. 320, pp. 23-27 (2011).
29. C. H. Chen, J. C. Chen, C. W. Lu, and C. M. Liu, “Effect of power arrangement on the crystal shape during the Kyropoulos sapphire crystal growth process”, Journal of Crystal Growth, Vol. 352, pp. 9-15 (2012).
30. H. Fang, J. Tian, Q. Zhang, Y. Pan, and S. Wang, “Study of melt convection and interface shape during sapphire crystal growth by Czochralski method”, International Journal of Heat and Mass Transfer, Vol. 55, pp. 8003-8009 (2012).
31. M. J. Hur, X. F. Han, D. S. Song, T. H. Kim, N. J. Lee, Y. J. Jeong, and K. W. Yi, “The influence of crucible and crystal rotation on the sapphire single crystal growth interface shape in a resistance heated Czochralski system”, Journal of Crystal Growth, ARTICLE IN PRESS (2013).
32. M. H. Tavakoli, T. A. Abasi, S. Omid, and E. B. Manesh, “The role of inner internal radiation on the melt growth of sapphire crystal”, Crystal Research and Technology, Vol. 48, No. 2, pp. 58-68 (2013).
33. O. M. Bunoiu, Th. Duffar, and I. Nicoara, “Gas bubbles in shaped sapphire”, Progress in Crystal Growth and Characterization of Materials, Vol. 56, pp. 123-145 (2010).
34. V. A. Borodin, T. A. Steriopolo, V. O. Tatarchenko, and T. N. Yalovets, “Control over gas bubble distribution in shaped sapphire crystals”, Crystal Research and Technology, Vol. 20, No. 3, pp. 301-306 (1985).
35. I. Nicoara, D. Nicoara, and V. Sofonea, “Void formation and distribution in shaped sapphire crystals”, Journal of Crystal Growth, Vol. 104, pp. 169-174 (1990).
36. O. M. Bunoiu, I. Nicoara, J. L. Santailler, F. Theodore, and T. Duffar, “On the void distribution and size on shaped sapphire crystals”, Crystal Research and Technology, Vol. 40, No. 9 pp. 852-859 (2005).
37. Irina. Nicoara, O. M. Bunoiu, and D. Vizman, “Voids engulfment in shaped sapphire crystals”, Journal of Crystal Growth, Vol. 287, pp. 291-295 (2006).
38. D. V. Kostomarov, Kh. S. Bagdasarov, S. A. Kobzareva, and E. V. Antonov, “Thermodynamic Analysis of the W–Al2O3 System near the Melting Temperature of Al2O3. I. Evolution of the System in the Pressure Range of 1 ×〖10〗^(–1)–1×〖10〗^(–4) bar”, ISSN 1063-7745, Crystallography Reports, 2010, Vol. 55, No. 2, pp. 318–323 (2010).
39. D. V. Kostomarov, Kh. S. Bagdasarov, S. A. Kobzareva, and E. V. Antonov, “Thermodynamic Analysis of the W–Al2O3 System near the Melting Temperature of Al2O3: II. Chemical Interactions at 1 ×〖10〗^(–5) bar”, ISSN 1063-7745, Crystallography Reports, 2010, Vol. 55, No. 3, pp. 513–517 (2010).
40. D. V. Kostomarov, Kh. S. Bagdasarov, and E. V. Antonov, “Oxidation of Tungsten in the W-Al2O3 System at Temperatures from 2350 to 2500 K and Pressures from 1 to 〖10〗^5 Pa”, ISSN 0020-1685, Inorganic Materials, 2011, Vol. 47, No. 2, pp. 152–155 (2011).
41. H. J. T. Ellingham, “Reducibility of oxides and sulphides in metallurgical processes”, Journal of the Society of Chemical Industry, pp. 125-133 (1944).
42. O. M. Bunoiu, F. Defoort, J. L. Santailler, T. Duffar, and I. Nicoara, “Thermodynamic analyses of gases formed during the EFG sapphire growth process”, Journal of Crystal Growth, Vol. 275, pp. 1707-1713 (2005).
43. W. Gui-gen, Z. Ming-fu, Z. Hong-bo, H. Xiao-dong, and Han. Jie-cai, “Study on inclusions in large sapphire optical crystal grown by SAPMAC Method”, Chinese Journal of Aeronautics, Vol. 19, pp. 31-35 (2006).
44. L. Zhang, H. Zuo, J. Zhou, J. Sun, D. Xing ,and J. Han, “Haze in sapphire crystals grown by SAPMAC method”, Crystal Research and Technology, Vol. 46, No. 7 pp. 669-675 (2011).
45. E. A. Ghezal, H. Li, A. Nehari, G. Alombert-Goget, A. Brenier, K. Lebbou, M. F. Joubert, and M. T. Soltani, “Effect of pulling rate on bubbles distribution in sapphire crystals grown by the micropulling down (μ-PD) technique”, Crystal Growth and Design, Vol. 12, pp. 4098-4103 (2012).
46. E. A. Ghezal, A. Nehari, K. Lebbou, and T. Duffar, “Observation of gas bubble incorporation during Micropulling-Down growth of sapphire”, Crystal Growth and Design, Vol. 12, pp. 5715-5719 (2012).
47. H. Li, E. A. Ghezal, A. Nehari, G. Alombert-Goget, A. Brenier, and K. Lebbou, “Bubbles defects distribution in sapphire bulk crystals grown by Czochralski technique”, Optical Materials, Vol. 35, pp. 1071-1076 (2013).
48. I. Nicoara, D. Vizman, and J. Friedrich, “On void engulfment in shaped sapphire crystals using 3D modelling”, Journal of Crystal Growth, Vol. 218, pp. 74-80 (2000).
49. O. Bunoiu, T. Duffar, F. Theodore, J. L.Santailler, and I. Nicoara, “Numerical simulation of the flow field and solute segregation in Edge-Defined Film-Fed Growth”, Crystal Research and Technology, Vol. 36, No. 7, pp. 707-717 (2001).
50. O. M. Bunoiu, J. L. Santailler, T. Duffar, and I. Nicoara, “Fluid flow and solute segregation in EFG crystal growth process”, Journal of Crystal Growth, Vol. 275, pp. 799-805 (2005).
51. H. Fang, L. Zheng, H. Zhang, Y. Hong, and Q. Deng, “Reducing melt inclusion by submerged heater or baffle for optical crystal growth”, Crystal Growth and Design, Vol. 8, No. 6, pp. 1840-1848 (2008).
52. H. Henry, and A. A. Stavros, “Mathematical modeling of solidification and melting: A review,” Modelling and Simulation in Materials Science and Engineering, Vol. 4, pp. 371-394 (1996).
53. M. N. Ozisik, Heat Conduction, 虹橋書店, Chap. 10 (1980).
54. Daniel Vizmen, Irina Nicoara, and Georg Miller, “Effect of temperature asymmetry and tilting in the vertical Bridgman growth of semi-transparent crystals”, Journal of Crystal Growth, Vol. 212, pp. 334-339 (2000).
55. Z. Liu and T. Carlberg, A model for dopant concentration in Czochralski silicon melts, Journal of the Electrochemical Society, Vol. 140, No. 7, July (1993).
56. K. Abe, T. Kondoh, and Y. Nagano, “A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows—I. Flow field calculations”, International Journal of Heat and Mass Transfer, Vol. 37, pp. 139-151 (1994).
57. BUNG RYEOL SEO. B.E., M.E., “A NUMERICAL STUDY OF BUOYANT TURBULENT FLOWS USING LOW-REYNOLDS NUMBER k-ε MODEL”, (2001).
58. COMSOL 4.3 Multiphysics User’s Guide.
59. E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire-Material, Manufacturing, Applications.
60. 姚泰, 韓杰才, 左洪波, 孟松鶴, 張明福, 李常青, “藍寶石單晶的氣孔形成研究”, Journal of Inorganic Materials, Vol. 23, No. 3, pp. 439-442 (2008).
61. 張克從, 張東潓, 晶體生長科學與技術(第二版) 上冊, Chap.6, 科學出版社(1997).
62. 楊琳, 左然, “藍寶石晶體生長中氣泡及熱應力的數值模擬研究”, 江蘇大學碩士學位論文, 西元2012年5月.
63. J. A. Burton, R. C. Prim, and W. P. Slichter, “The distribution of solute in crystals grown from the melt. Part I. Theoretical”, Journal of Chemical Physics, Vol. 21, pp. 1987-1991 (1953).
64. D. T. J. Hurle, “Constitutional supercooling during crystal growth from stirred melt-I”, Solid-State Electronics, Vol. 3, pp. 37-44 (1961).
65. M. C. Flemings, Solidification Processing, McGraw-Hill book company, New York, pp. 60 (1974).
66. 劉哲銘, “氧化鋁單晶強化機制及其表面生長奈微米鎂鋁尖晶石之研究”, 國立中央大學機械工程研究所, 博士論文, pp. 55, 民國九十五年一月.
67. 陳建宏, “柴式法生長氧化鋁單晶過程最佳化熱流場之分析” , 國立中央大學機械工程研究所, 碩士論文, pp. 41, 民國九十七年六月.
68. R. Vichnevetsky, Computer methods for partial differential equations volume. Elliptic equations and the finite-element method (1981).
69. Huili Tang, Hongjun Li, and Jun Xu, Growth and Development of Sapphire Crystal for LED Applications, Chinese Academy of Sciences (2013).
指導教授 陳志臣(Jyh-chen Chen) 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明