博碩士論文 101323064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:184.72.212.254
姓名 游翔霖(Siang-Lin You)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 MOCVD噴淋式腔體沉積模擬與進氣系統分析
相關論文
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 石英蝕刻微結構之非等向性研究★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析★ 石英柱狀微結構濕蝕刻製程之研究
★ 利用暫態熱微影技術製備高分子微結構★ 石英柱狀微結構之表面聲波感測器之研製與特性分析
★ 利用電子束微影製作高密度石英柱狀結構★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備
★ 石英微結構對表面接觸角與潤濕性影響之研究★ 石英奈米針狀結構表面之潤濕性及遲滯性研究
★ 利用示差掃描熱量分析與雷射閃光熱擴散法 研究牛血清蛋白之熱變性★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition
★ 利用聲子波茲曼方程式分析非對稱多孔矽之熱傳性質★ 柱狀微結構對液珠熱毛細運動之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 金屬有機化學氣相磊晶(metalorganic chemical vapor deposition, MOCVD)技術廣泛使用於LED磊晶生長,目前市面上主要的MOCVD設備包括TurboDisc、行星式與近耦合噴淋式,每種機台皆有其優缺點。近耦合噴淋式腔體具有良好的沈積均勻性與反應氣體使用率,由於進氣系統會受到預反應影響,導致噴嘴處容易產生堵塞的現象而影響磊晶生長,必須定期清理避免磊晶生長受到影響。本研究針對近耦合噴淋式腔體之沈積與噴嘴堵塞情形進行研究,利用有限元素法進行數值模擬。模擬中考量腔體內熱流場、質量傳輸及化學反應之耦合,並針對反應過程產生的各物種之濃度分佈及其對沈積貢獻度進行深入探討。研究中除了建立磊晶成長與噴嘴堵塞評估機制,並針對噴嘴進行改善設計,以減少噴嘴處沈積改善噴嘴阻塞。研究結果顯示在化學反應影響下,噴嘴處的物種以TMG(trimethyl gallium)與加合物(adduct)為主;載盤處的物種以MMG(monomehyl gallium)為主;而DMGNH2(dimethyl gallium amide)在腔體中生成的量極少。在進氣流速與比例影響分析中,流速增加會造成載盤處長率提高、噴嘴處長率下降;TMG質量分率提高則載盤長率與噴嘴的沉積都會增加。最後進行進氣設計改良分析,分別在噴嘴處加入阻擋物與倒角,當阻擋物長度增加,載盤長率會提升,噴嘴沉積會減少,但會造成磊晶均勻性降低。當倒角長度增加,載盤長率略為下降,噴嘴處進口的沉積減少。
摘要(英) Metalorganic chemical vapor deposition is widely used in LED manufacturing. There are different reactor designs on the current market including TurboDisc, planetary, and close-coupled showerhead. Close-coupled showerhead reactor has good deposition uniformity and minimum source gas usage, but it has gas inlet nozzle plugging problem. In this study, we use finite element method to simulate the reaction and physical phenomena in a close-coupled showerhead reactor and evaluate the GaN deposition uniformity and the gas inlet nozzle plugging problem. The results show that the main species in the vicinity of the inlet nozzle is TMG and TMG:NH3. While the main species near the susceptor surface is MMG. The concentration of DMGNH2 in the reactor is very low. Increasing the gas inlet velocity can increase the growth rate and reduce nozzle plugging. Increasing the mass fraction of TMG source gas results in the increase of both the growth rate and nozzle plugging, but it is less significant on the plugging problem. Finally, we modified the inlet nozzles with barriers and chamfers.We found that the epitaxial growth increases and the nozzle plugging reduces with increasing barrier length. In the chamfering design, we found both the epitaxial growth and the nozzle plugging reduce with increasing chamfering length.
關鍵字(中) ★ 數值模擬
★ MOCVD
★ 近耦合噴淋式腔體
關鍵字(英) ★ numerical simulation
★ MOCVD
★ close-coupled showerhead
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xiv
符號對照表 xv
第一章 緒論 1
1-1 研究背景 1
1-2 磊晶生長 3
1-3 金屬有機化合物氣相磊晶機台介紹 5
1-3-1 高速旋轉盤式反應腔體 7
1-3-2 行星式反應腔體 8
1-3-3 近耦合噴淋式腔體 9
1-4 文獻回顧 10
1-5 研究動機與目的 12
第二章 理論基礎 14
2-1 腔體熱傳理論 14
2-1-1 腔體中的熱傳遞形式 14
2-2 腔體流場理論 16
2-2-1 混合氣體特性 16
2-3 腔體質傳理論 17
2-4 化學反應工程(Chemical Reaction Engineering) 19
2-4-1 化學反應的分類 19
2-4-2 反應速率 20
2-5 統御方程式 21
第三章 研究方法 23
3-1 流程圖 23
3-1-1 研究架構圖 23
3-1-2 模擬流程圖 25
3-2 有限元素法 26
3-3 製程參數與特性 27
3-3-1 氣體特性 27
3-3-2 化學反應 28
3-3-3 腔體的進氣流速 31
3-3-4 進氣比例 32
3-4 邊界設定與基本假設 33
3-5 網格收斂測試 35
3-6 觀察點探討 37
3-7 模擬模型與評估方式建立 39
3-7-1 幾何模型之對稱與軸對稱模型比較 39
3-7-2 腔體溫度邊界確認 44
3-7-3 磊晶薄膜成長速率 46
3-7-4 噴嘴沉積評估計算 46
第四章 結果與討論 48
4-1 未加入化學反應機制 48
4-1-1 不同情形下的流線分佈 49
4-1-2 Showerhead不同進氣孔洞數的影響 52
4-1-3 小結 58
4-2 加入化學反應機制 59
4-2-1 化學反應與各物理現象耦合測試 59
4-2-2 加入氣相反應機制 60
4-2-3 加入表面反應機制 61
4-2-4 小結 63
4-3 各製程參數對長率的影響 64
4-3-1 流速的影響 64
4-3-2 進氣比例的影響 66
4-3-3 小結 73
4-4 進氣設計 74
4-4-1 阻擋物設計 74
4-4-2 倒角設計 86
4-4-3 左半倒角 100
4-4-4 小結 108
第五章 結論與未來展望 110
5-1-1 結論 110
5-1-2 未來展望 111
參考文獻 112
參考文獻 [1]史光國,“半導體發光二極體及固體照明”,全華圖書 (2010)
[2] 陸大成和段樹坤,“金屬有機化合物氣相外延基礎及應用”,科學出版社,第一版 (2009)。
[3] 張勁燕,“半導體製程設備”,五南 (2009)
[4]M. Razeghi, M. Henini, “Technology of MOCVD Production Tools,” Optoelectronic Devices: III-Nitrides, 1st ed. London, UK: ELSEVIER, 2004, ch. 4, sec. 4.2, pp. 40-67. [5]M. Mitrovic, A. Gurary, L. Kadinski, “On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters,” J. Cryst. Growth, vol. 287, pp. 656-663, Dec, 2006.
[6]Jingxi Sun, J. M. Redwing, and T. F. Kuech, “Model Development of GaN MOVPE Growth Chemistry for Reactor Design,” J. Electron. Mater. , vol. 29, no. 1, Jul, 2000.
[7]Chang-Yong Shin, Byung-Joon Baek, Cheul-Ro Lee, Bokchoon Pak, Jeong-Mo Yoon, Keun-Seop Park, “Numerical analysis for the growth of GaN layer in MOCVD reactor,” J. Cryst. Growth, vol. 247, pp. 301-312, Sep, 2003.
[8]Debasis Sengupta, Sandip Mazumder, William Kuykendall, Samuel A. Lowry, “Combined ab initio quantum chemistry and computational fluid dynamics calculations for prediction of gallium nitride growth,” J. Cryst. Growth, vol. 279, pp. 369-382, Feb, 2005.
[9]Rinku P. Parikh, Raymond A. Adomaitis, Michael E. Aumer, Deborah P. Partlow, Darren B. Thomson, Gary W. Rubloff, “Validating gallium nitride growth kinetics using a precursor delivery showerhead as a novel chemical reactor,” J. Cryst. Growth, vol. 296, pp. 15-26, Jul, 2006.
[10]M. Dauelsberg, C. Martin, H. Protzmann, A. R. Boyd, E. J. Thrush, J. Kappeler, M. Heuken, R. A. Talalaev, E. V. Yakovlev, A. V. Kondratyev, “Modeling and process design of III-nitride MOVPE at near-atmospheric pressure in close coupled showerhead and planetary reactors,” J. Cryst. Growth, vol. 298, pp. 418-424, Nov, 2007.
[11]Zhong Shuquan, Ren Xiaomin, Huang Yongqing, Huang Hui, Wang Qi, “Numerical studies on transport phenomena in LP-MOCVD reactor,” Sciencepaper Online, 2009.
[12]LIU Ruolei, YANG Ruichang, YOU Changfu, ZHAO Lei, ZHOU Tao, “Kinematic characteristics and thermophoretic deposition of inhalable particle in temperature gradient field,” J. CIESC., vol. 60, no. 7, pp. 1628, 2009.
[13]Ran Zuo, Haiqun Yu, Nan Xu, Xiaokun He, “Influence of Gas Mixing and Heating on Gas-Phase Reactions in GaN MOCVD Growth,” J. Solid State Sci. Technol., vol. 1, no. 1, pp. 46-53, 2012.
[14]DeWitt, Bergmann, Lavine, “Essential Concepts,” Fundamentals of Heat and Mass Transfer, sixth ed. New York: Wiley, 2007, ch. 1, sec. 1.2, pp. 3-9.
[15]Dimitrios I. FOTIADIS, Klavs F. JENSEN, “THERMOPHORESIS OF SOLID PARTICLES IN HORIZONTAL CHEMICAL VAPOR DEPOSITION REACTORS,” J. Cryst. Growth, vol. 102, pp. 743-761, Jan, 1990.
[16]Clayton T. Crowe, Donald F. Elger, Barbara C. Williams, John A. Roberson, “Fluid Properties,” Engineering Fluid Mechanics, 9th ed. New York: Wiley, 2010, ch. 2, sec. 2.2, pp. 16.
[17]Perry’s chemical engineers, 7th ed., McGraw-Hill, New York, 2007.
[18]P. D. Neufeld, A. R. Janzen, and R. A. Aziz, “Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω for the Lennard-Jones (12-6) Potential,” J. Chem. PHys, vol. 57, pp. 1100, 1972.
[19]R. S. Brokaw, “Predicting Transport Properties of Dilute Gases,” Ind. Eng. Process Design Develop., vol. 8, pp. 240-253, 1969.
[20]Charles Hirsch, “Numerical Computation of Internal and External Flows,” Numerical Computation of Internal and External Flows, second ed. New York: Wiley, 2007.
[21]C. Theodoropoulos, T. J. Mountziaris, H. K. Moffat, J. Han, “Design of gas inlets for the growth of gallium nitride by metalorganic vapor phase epitaxy,” J. Cryst. Growth, vol. 217, pp. 65-81, Mar, 2000.
[22]S. Heikman, S. Keller, U. K. Mishra, “Vapor-phase epitaxy of gallium nitride by gallium are discharge evaporation,” J. Cryst. Growth, vol. 293, pp. 335-343, Jul, 2006.
指導教授 洪銘聰(Ming-Tsung Hung) 審核日期 2014-12-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明