博碩士論文 101323065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.217.83.97
姓名 蕭仲博(Chung-Po Hsiao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 大尺寸LED晶片Efficiency Droop之光電熱效應研究
(Optical-Electrical-Thermal Effect on Efficiency Droop in Large Size Light Emitting Diode Chips)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ CZ法生長大尺寸藍寶石單晶之熱流場與溶質數值模擬研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,InGaN/GaN 多重量子井藍光或綠光LED已是固態照明中的主流,然而Efficiency Droop 是InGaN-based LED中相當關鍵的問題。Droop的現象是在高電流注入的情況下,內部量子效率會有極大的衰退,這會使LED元件的光功率輸出下降。在本研究中,我們利用有限元素法及蒙地卡羅法建立一套光電熱耦合數值模擬模型。透過電流守恆及能量守恆,我們可以了解載子在活化層內復合及漏電流之行為,並且定義其熱源方程及內部光分布。接著利用光追跡方法以內部光分布作為出光光源進行模擬。最後可以探討電流分布對接面溫度、電效率、內部量子效率、光萃取效率以及光功率之影響。
本研究探討大尺寸垂直與側向高功率晶片在光電熱交互影響下現象之Droop現象。由實驗可知側向結構的接面溫度上升較快且有更嚴重的Droop。透過模擬我們可以了解漏電流是造成Droop的主要機制,並且在高功率操作下升溫的過程由漏電流主導。此外,電流壅塞也對量子效率的影響及大,事實上,電流分布是啟動Droop的關鍵。受到電流壅塞的影響,活化層的內部量子效率會在Droop發生前後有完全相反的分布。
利用光學模擬,在光萃取效率也會有衰退的趨勢,其主要機制為活化層吸收效應。雖然電流分布在垂直結構較為優異,但受到電流壅塞的區域影響,電極遮蔽及吸收效應也更為強烈。這故造成了活化層具有較小的吸收係數但光萃取效率卻有較大的衰退。
摘要(英) Recently, InGaN/GaN multi-quantum well (MQW) of blue or green light emitting diodes (LEDs) has attracted great interest in solid-state lighting. However, the efficiency droop restricts LEDs ability under the high power operation which is the critical issue. The droop makes the internal quantum efficiency has a great drop. In this study, two commercial LED structures are investigated which are vertical and lateral chip respectively. The finite element method (FEM) and Monte Carlo statistics method are applied to the optical-electrical-thermal coupled numerical model. Through the current and energy conservation, we can define every carrier behavior in active layer and heat generation. We also can obtain the light source from the calculated IQE to start the ray tracing. Then we analyze the interaction of current spreading effect on electrical efficiency, internal quantum efficiency, light extraction efficiency, junction temperature and light output power.
The experiment shows the more nonlinear increase of junction temperature and severer droop in lateral structure. By the simulation, the carrier leakage is the main mechanism from the nature of materials which induces the droop. Furthermore, current crowding also affects the quantum efficiency. In fact, current spreading is the key to drive the droop from external.
In the final part, by the optical simulation, the light extraction efficiency also plays an important role of efficiency droop, which is caused by the absorption effect. Although the current crowding of the vertical structure degree is lower, the stronger absorption by n-pad results in the greater efficiency droop, even the absorption coefficient is smaller than lateral structure. Based on these analyses of the simulation, the better LED device is expected to improve.
關鍵字(中) ★ 氮化鎵
★ 發光二極體
★ 大尺寸晶片
★ 效率衰退
關鍵字(英) ★ GaN
★ LED
★ large size chip
★ Efficiency Droop
論文目次 摘要 i
ABSTRACT ii
致謝 iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xi
LIST OF SYMBOL xii
Chapter 1 Introduction 1
1.1 Background Information 1
1.2 Literature Review 3
1.2.1 Overview of Efficiency Droop Researches 3
1.2.2 Overview of Current Crowding Researches 5
1.3 Motivation and Objectives 7
Chapter 2 Theoretical and Numerical Method 13
2.1 LED Principle 13
2.2 LED Efficiency 14
2.3 Semiconductor Basic Theory 15
2.3.1 Doping Impurity 15
2.3.2 Metal and Semiconductor Contact 18
2.3.3 Carrier Mobility 20
2.3.4 Multiple Quantum Well Structure 21
2.3.5 Carriers in the Quantum Well 22
2.4 Physics Model 24
2.5 Electrical Field Theory 26
2.5.1 Governing Equation and Boundary Condition 26
2.5.2 Equivalent Conductivity in Active Layer 28
2.5.3 Recombination in Active Layer 29
2.6 Thermal Field Theory 31
2.6.1 Governing Equation and Boundary Condition 31
2.6.2 Semiconductor Thermal Conductivity 33
2.7 Optical Field Theory 34
2.7.1 Snell’s Law 34
2.7.2 Total Internal Reflection 35
2.7.3 Beer-Lambert-Bouguer Law 35
2.7.4 Fresnel Loss 36
2.8 Numerical Method 37
2.8.1 Solving Method 37
2.8.2 Solving Step 37
2.8.3 Meshing and Convergence 38
Chapter 3 Experimental Theory and Measurement Method 67
3.1 Junction Temperature Measuring Theory 67
3.2 Junction Temperature Measuring System 68
3.2.1 K Factor Calibration Curve 68
3.2.2 Junction Temperature 68
3.3 Recombination Coefficient Measuring Theory 69
3.4 Optics Measuring System 70
Chapter 4 Result and Discussion 75
4.1 LED Experimental Result 75
4.1.1 Junction Temperature Measurement 75
4.1.2 Optical Measurement 75
4.2 LED Simulation Result 76
4.2.1 Optical-Electrical-Thermal Coupled Simulation 76
4.2.2 Temperature Distribution in Hi-Power Packaging 76
4.3 Analysis of Efficiency Droop 77
4.3.1 Current Crowding and Local IQE 77
4.3.2 Recombination Rate and Carrier Leakage 78
4.3.3 Droop in LEE 80
Chapter 5 Conclusion and Future Works 101
REFERENCE 103
參考文獻 1.http://www.ledinside.com.tw/knowledge/20090109-8979.html, LEDinside 全球白熾燈泡禁用時間表 (2009).
2.Y. Shimizu, K. Sakano, Y. Noguchi, T. Moriguchi, “Indium, gallium, aluminum nitride; garnet containing rare earth oxide,” United States Patent, US5998925 (1999).
3.J.G. Kang, M.K. Kim, “Yellow phosphor and white light emitting device using the same,” United States Patent, US20080191234 (2008).
4.S.J. Chang, T.K. Lin, Y.Z. Chiou, B.R. Huang, S.P. Chang, C.M. Chang, Y.C. Lin and C.C. Wong, “ZnSe based white light emitting diode on homoepitaxial ZnSe substrate” IET Optoelectron., 1, 39–41 (2007)
5.H. P. T. Nguyen , S. Zhang , K. Cui , X. Han , S. Fathololoumi , M. Couillard , G. A. Botton , and Z. Mi “p-type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111)”, Nano Lett., 11, 1919-1924 (2011).
6.J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors” IEEE Photon. Tech., 15, 18-20 (2003).
7.Y. H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Optics Lett., 34, 1-3 (2009).
8.P. Deurenberg, C. Hoelen, J. van Meurs, J. Ansems, “Achieving color point stability in RGB multi-chip LED modules using various color control loops,” Proc. SPIE, 5941, 59410C-1 (2005).
9.郭子菱、呂紹旭, “白光LED技術發展演進近況” (2007)
10.C.K. Li and Y.R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs”, IEEE Trans. On Elect. Devices, Vol. 59, NO. 2, 400-407 (2012)
11.J. Baur, D. Eisert, V. Harle, “Radiation-emitting chip and radiation-emitting component,” United States Patent, US7196359 (2007).
12.N.C. Chen, C.F. shin, C.A. Chang, A. P. Chiu, S.D. Teng, K.S. Liu, “High-quality GaN films grown on Si(111) by a reversed Stranski–Krastanov growth mode”, Phys. Stat. Sol. (b), 241, 2698-2702 (2004).
13.C.F. Chu, C.C. Cheng, W.H. Liu, J.Y. Chu, F.H. Fan, H.C. Cheng, T. Doan, and C.A. Tran, “High Brightness GaN Vertical Light-Emitting Diodes on Metal Alloy for General Lighting Application”, Proces. Of the IEEE, Vol.98, No.7, pp. 1197-1207 (2010).
14.G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, E. Zanoni, “Efficiency droop in InGaN/GaN blue light-emitting diodes: physical mechanisms and remedies”, J. of Appl. Phys., 114, 071101 (2013)
15.N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, L. Deng, “Solid-state lighting : failure analysis of white LEDs,” J. Crystal. Growth , 268, 449-456 (2004).
16.J. Piprek, “Efficiency droop in nitride-based light-emitting diodes”, Phys. Status Solidi A., 207, 2217–2225 (2010).
17.J. Piprek, “Nitride Semiconductor Devices: Principles and Simulation”, Wiley (2007).
18.E. F. Schubert, “Light-Emitting Diodes”, 2nd ed., Cambridge University Press, Cambridge, England (2006).
19.M.H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes”, Appl. Phys. Lett., 91, 183507 (2007).
20.J. Xu, M.F. Schubert, A.N. Noemaun, D. Zhu, J.K. Kim, E.F. Schubert, M.H. Kim, H.J. Chung, S. Yoon, C. Sone, Y. Park,” Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes”, Appl. Phys. Lett., 94, 011113 (2009).
21.Y.K. Kuo, J.Y. Chang, M.C. Tsai, S.H. Yen, “Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers”, Appl. Phys. Lett., 95, 011116 (2009).
22.M. Zhang, P. Bhattacharya, J. Singh, J. Hinckley, “Direct measurement of auger recombination in In0.1Ga0.9N/GaN quantum wells and its impact on the efficiency of In0.1Ga0.9N/GaN multiple quantum well light emitting diodes”, Appl. Phys. Lett., 95, 201108 (2009).
23.Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho E.F. Schubert, M.H. Crawford, D.D. Koleske, M.H. Kim, Y. Park, “Carrier recombination mechanisms and efficiency droop in GaInNGaN light-emitting diodes”, Appl. Phys. Lett., 97, 133507 (2010).
24.S.C. Ling, T.C. Lu, S.P. Chang, J.R. Chen, H.C. Kuo, S.C. Wang, “Low efficiency droop in blue-green m-plane InGaN GaN light emitting diodes”, Appl. Phys. Lett., 96, 231101 (2010).
25.Y. Zhao, S. Tanaka, C.C. Pan, K. Fujito, D. Feezell, J.S. Speck, S.P. DenBaars, S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2”, Appl. Phys. Express, 4, 082104 (2011).
26.D.S. Meyaard, Q. Shan, Q. Dai, J. Cho, E.F. Schubert, M.H. Kim, C. Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes”, Appl. Phys. Lett., 99, 041112 (2011).
27.G.B. Lin, D. Meyaard, J. Cho, E.F. Schubert, H. Shim, C. Sone, “Analytic model for the efficiency droop in semiconductors with asymmetric carrier transport properties based on drift-induced reduction of injection efficiency”, Appl. Phys. Lett., 100, 161106 (2012).
28.H.J. Li, P.P. Li, J.J. Kang, Z. Li, Y.Y. Zhang, M. Liang, Z.C. Li, J. Li, X.Y. Yi, G.H. Wang, “Analysis model for efficiency droop of InGaN light-emitting diodes based on reduced effective volume of active region by carrier localization”, Appl. Phys. Express, 6, 092101 (2013).
29.X. Guo, E.F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates”, J. of Appl. Phys., 90, 4191 (2001).
30.X. Guo, Y.L. Li, E.F. Schubert, “Efficiency of GaN-InGaN LEDs with interdigitated mesa geometry”, Appl. Phys. Lett., Vol. 79, No.13, pp. 1936-1938 (2001).
31.A. Laubsch, M. Sabathil, J. Baur, M. Peter, B. Hahn, “High-power and high-efficiency InGaN-based light emitters”, IEEE Trans. on Elect. Device, Vol. 57, No. 1, pp. 79-87 (2010).
32.H.H. Liu, P.R. Chen, G.Y. Lee, J.I. Chyi, “Efficiency enhancement of InGaN LEDs with an n-type AlGaN/GaN/ InGaN current spreading layer”, IEEE Trans. on Elect. Device, Vol. 32, No. 10, pp. 1409-1411 (2011).
33.Y.Y. Kudryk, A.K. Tkachenko, A.V. Zinovchuk, “Temperature-dependent efficiency droop in InGaN-based light-emitting induced by current crowding diodes”, Semicond. Sci. Technol. 27, 055013 (2012).
34.Y.J. Tsai, R.C. Lin, H.L. Hu, C.P. Hsu, S.Y. Wen, C.C. Yang, “Novel electrode design for integrated thin-film GaN LED package with efficiency improvement”, IEEE Phot. Tech. Lett., Vol. 25, No. 6, pp. 609-611 (2013).
35.J. C. Chen, G. J. Sheu, F. S. Hwu, H. I. Chen, J. K. Sheu, T. X. Lee, C. C. Sun, “Electrical-optical analysis of a GaN/sapphire led chip by considering the resistivity of the current-spreading layer,” Opti. Review, 16, 213-215 (2009).
36.F. S. Hwu, T. H. Sung, C. H. Chen, J. W. Tseng, H. Qiu, J. C. Chen, “A Numerical Model for Studying Multi-microchip and Single-Chip LEDs With an Interdigitated Mesa Geometry,” IEEE J. Photon. Soc. Pub., 5, 6600515 (2013).
37.G. J. Sheu, F. S. Hwu, J. C. Chen, J. K. Sheu, W. C. Laic “Effect of the Electrode Pattern on Current Spreading and Driving Voltage in a GaN/Sapphire LED Chip, ” J. Elec. Soc., 155, H836-H840 (2008).
38.F. S. Hwu, J. C. Chen, S. H Tu, G. J. Sheu, H. I. Chen , J. K. Sheu “A Numerical Study of Thermal and Electrical Effects in a Vertical LED Chip, ” J. Elec. Soc., 157, H31-H37 (2010).
39.S. H. Tu, J. C. Chen, F. S. Hwu, G. J. Sheu, F. L. Lin, S. Y. Kuo, J. Y. Chang, C. C. Lee “Characteristics of current distribution by designed electrode patterns for high power Thin GaN LED,” Solid-Slate Elec., 54, 1438-1443 (2010).
40.施敏,半導體元件物理與製作技術,黃調元 譯,二版,國立交通大學出版社,新竹市,民國九十一年。
41. S. M. Sze, Kwok K. Ng, “Physics of Semiconductor Devices”, 3rd ed., Wiley, 2007.
42.Bart Van Zeghbroeck, “Principles of Semiconductor Devices”, Boulder, 2006
43.J. S. Jang and T. Y. Seong, “Electronic transport mechanisms of nonalloyed Pt Ohmic contacts to p-GaN” Appl. Phys. Lett., Vol. 76, No.19, pp. 2743-2745(2000).
44.A. Pérez-Tomás, A. Fontserè, M. Placidi, M. R. Jennings and P. M. Gammon “Modelling the metal–semiconductor band structure in implanted Ohmic contacts to GaN and SiC”, Modelling Simul. Mater. Sci. Eng., 21, 035004 (2013)
45.鍾松畛,「p型氮化鎵金屬歐姆接觸特性之研究」,成功大學材料科學與工程研究所,碩士論文,民國九十三年。
46.方啟鑫,「高反射p型氮化鎵歐姆接觸之研究」,中央大學電機工程研究所,碩士論文,民國九十二年。
47.H. Tang, W. Kim, A. Botchkarev, G. Popovici, F. Hamdani and H. Morkoc, “Analysis of carrier mobility and concentration in Si-doped GaN grown by reactive molecular beam epitaxy”, Soli. Stat. Elect., Vol. 42, No. 5, pp. 839-847.(1998)
48.M. Farahmand, C. Garetto, E. Bellotti, K. F. Brennan, M. Goano, E. Ghillino, G. Ghione,, J. D. Albrecht, and P. P. Ruden, “Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system binaries and ternaries”, IEEE Trans. on Elect. Dev., Vol. 48, NO. 3.(2001)
49.I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys., Vol. 89, No. 11, (2001).
50.K. Shockley, T. Read, J R. “Statistics of the recombinations of holes and electrons”, Phys. Revi. Vol 87, No. 5, pp. 835-842.(1952)
51.〖"EZBright" 〗^"TM" LED Handling and Packaging Recommendations.
52.〖"Cree" 〗^"R" "EZ1000" Gen II LED Data Sheet.
53.S.L. Yeh, C.Y. Wang, “Optoelectronic semiconductor device”, United States Patent, US8692280 B2 (2014).
54.EpiStarR ES-CABLV45P Data Sheet.
55.J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang, and G. C. Chi, “Low-operation voltage of ingan/gan light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer”, IEEE Electr. Devices Lett., Vol. 22,No. 10, pp. 460-462 (2001).
56.C.J. Eiting, P.A. Grudowski, and R.D. Dupuis, “P- and N-Type Doping of GaN and AlGaN Epitaxial Layers Grown by Metalorganic Chemical Vapor Deposition”, J.of Electr. Mater., Vol. 27,No. 4, pp. 206-209 (1998).
57.P. Kozodoy, H.L. Xing, S.P. DenBaars, U.K. Mishra, A. Saxler, R. Perrin, S. Elhamri, W.C. Mitchel, “Heavy doping effects in Mg-doped GaN”, J Of Appl Phys., Vol. 87,No. 4, pp. 1832-1835 (2000).
58. U. Kaufmann, P. Schlotter, H. Obloh, K. Ko ̈hler, M. Maier “Hole conductivity and compensation in epitaxial GaN:Mg layers”, Phys. Review B, Vol. 62, No.16, pp. 10867-10872 (2000).
59.R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, “Tin doped indium oxide thin films: Electrical properties”, J of Appl. Phys., Vol.83, NO. 5, pp. 2631-2645 (1998).
60.XinLeDR XIN-1BEWL01-15 Specification.
61.許俊昇,「高功率LED固晶技術之研究」,中央大學光電科學與工程研究所,碩士論文,民國九十八年。
62.F. Kerrour, A. Boukabache, P. Pons, “Modelling of thermal behavior n-doped silicon resistor”, J.of Senor Tech., 2, 132-137 (2012)
63.L.A. Yang, Y. Hao, Q.Y. Yao, and J.cC. Zhang, “Improved Negative Differential Mobility Model of GaN and AlGaN for a Terahertz Gunn Diode”, IEEE Trans. on Electr. Devices, 0018-9838 (2011).
64.Jakob, “Heat Transfer”, Wiley, New York, Chapman and Hall, London. (1958)
65.T. Jeong, J.H. Baek, K.C. Jeong, J.S. Ha, and H.Y. Ryu, “Investigation of light extraction efficiency and internal quantum efficiency in high-power vertical blue light-emitting diode with 3.3w output power”, J. J. of Appl. Phys. 52 (2013).
66.Y. B. Acharyaa, P. D. Vyavahare, “Study on the temperature sensing capability of a light-emitting diode,” Sci. Instrum., 68, 4465 (1997).
67. U ̈. Özügr, H. Liu, X. Li, X. Ni, H. Morkoc, “GaN-Based Light-Emitting Diodes: Efficiency at High Injection Levels,” Proc. of the IEEE, Vol. 98,No. 7, pp. 1180-1196. (2010)
68.蔡上祐,「LED晶片微結構對光萃取效率及指向性之模擬與分析」,中央大學光電科學與工程研究所,碩士論文,民國九十八年。
69.K. Laqual, W. H. Melhuish, M. Zander, “Molecular Absorption Spectroscopy, Ultraviolet and Visible (UV/VIS),” Pure Appl. Chem., 60, 1449-1460, (1988).
70.A.J. Baker, “Finite Element Computational Fluid Mechanics” (1983).
71.M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur, “Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe,” Wiley (2001).
72.http://refractiveindex.info/, Refractive index database.
73.G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, “Improved refractive index formulas for the AlxGa1-xN and InyGa1-yN alloys,” J. of Appl. Phys. Vol.89, No.2, pp.1108-1115 (2001).
74.林翰威,「氮化鋁鎵/氮化銦鎵超晶格太陽能電池光伏特性之模擬研究」,國立彰化師範大學物理研究所,碩士論文,民國一O一年。
75.Y. Xi, E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method, ” Appl. Phys. Lett., 85,
2163 (2004).
76.EIA/JEDEC Standard : “EIA/JEDEC51-2”, Electronic Industries Alliance, Engineering Department, Arlington (1995).
77.H. Yoshida, M. K., Y. Yamashita, K. Uchiyama, H. Kan, “Radiative and nonradiative recombination in an ultraviolet GaN/AlGaN multiple quantum- well laser diode”, Appl. Phys. Lett. 96, 211122 (2010)
78.Y.S. Yoo, T.M. Roh, J.H. Na, S. J. Son, Y.H. Cho, “Simple analysis method for determining internal quantum efficiency and relative recombination ratios in light emitting diodes”, Appl. Phys. Lett. 102, 211107 (2013)

指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明