博碩士論文 101323067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.90.45.27
姓名 洪慧芬(Huei-Fen Hong)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用示差掃描熱量分析與雷射閃光熱擴散法 研究牛血清蛋白之熱變性
(Studies of Thermal Denaturation of Bovine Serum Albumin using Differential Scanning Calorimetry and Laser Flash Method)
相關論文
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 石英蝕刻微結構之非等向性研究★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析★ 石英柱狀微結構濕蝕刻製程之研究
★ 利用暫態熱微影技術製備高分子微結構★ 石英柱狀微結構之表面聲波感測器之研製與特性分析
★ 利用電子束微影製作高密度石英柱狀結構★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備
★ 石英微結構對表面接觸角與潤濕性影響之研究★ 石英奈米針狀結構表面之潤濕性及遲滯性研究
★ MOCVD噴淋式腔體沉積模擬與進氣系統分析★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition
★ 利用聲子波茲曼方程式分析非對稱多孔矽之熱傳性質★ 柱狀微結構對液珠熱毛細運動之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 牛血清蛋白(bovine serum albumin,BSA),是血清中的簡單蛋白質,常被用在分子生物學、免疫學、食品科學及蛋白質化學等生化研究上;相較於其他蛋白質,BSA能使細胞膜穩定,具有抑制脂質之過氧化、產生乳化及防凍等作用,另外有價格低及容易純化等優點,所以常當作實驗材料或基準蛋白質。BSA的結構是由蛋白質二級結構反覆摺疊而成的緊密立體球狀結構,當對原生態BSA加熱後,其動能提升,造成蛋白質分子鍵結強烈振動而破壞,最後凝聚形成無序組織的變性蛋白質。蛋白質熱變性的研究中,最常使用的方法是示差掃描熱量分析法(differential scanning calorimetry, DSC),並藉由量測熱量與溫度關係探討蛋白質在變性狀態與原生態間的焓差、熵差及比熱差。然而,相關研究很少探討熱變性對熱傳輸性質的影響。文獻指出,因為生物組織的個體差異,以不同量測點、量測方法將使得熱傳導係數有很高的分散性,導致量測困難;是本研究覺得相關文獻較少的可能原因。
本研究中,使用DSC探討BSA水溶液在熱變性過程與熱量的關係,同時利用雷射閃光法(laser flash analysis, LFA),研究熱變性對有效熱傳導係數及對有效熱擴散係數的時間相依性的影響。實驗量測5~20 wt%BSA水溶液之密度、比熱及有效熱擴散係數,計算出有效熱傳導係數隨溫度的變化。研究發現在水溶液中之BSA的含量越高,其熱變性過程所需的能量也越大,反應出的比熱變化也最大。在熱擴散分析中,LFA並無法正確地量測出熱變性過程的有效熱擴散係數,但可以反映出不同程度之熱變性對熱傳輸現象之影響。結果顯示,有效熱擴散係數隨BSA濃度增加而提高,在大於熱變性溫度後有明顯的提升,並與持溫時間呈線性成長;隨著BSA水溶液濃度的增加,熱變性過程對有效熱擴散係數的影響也更為劇烈。熱變性的程度對BSA溶液的傳輸特性具有一定的影響力。透過本研究探討蛋白質之熱變性將能了解生物分子熱傳輸現象在修復醫學及生醫檢測上且有潛在的應用與重要性。
摘要(英) Bovine serum albumin, BSA, is often used in molecular biology, immunology, nutritional science or protein chemistry, due to its stability, inhibition of lipid peroxidation, emulsification and antifreeze effects. In addion, BSA’s low cost and easy to purify make it a good candidate for experiment and as a reference protein. BSA has a spherical structure that formed by the tightly folding of the secondary structures. In the elevated temperature, the native BSA gains kinetic and results in a strong vibration causing the damage of the molecule bonding. The 3D structure is then unfolds and turned into the denatured state. In order to study the thermal denaturation of protein, researchers commonly use differential scanning calorimetry method, DSC, to investigate the changes in enthalpy, entropy and specific heat by measuring the heat flow in the elevated temperature. The thermal denaturation effects on the heat transport properties of proteins, however, that is seldom investigated and may have potential impacts on biomedical applications.
In this study, we used DSC to explore the relationship between BSA solutions and the heat flow in the thermal denaturation process. Additionally, laser flash analysis, LFA, was use to study the effective thermal diffusivity of BSA solutions with various concentrations. The time dependence of the thermal diffusivity was also considered. Experiments had performed to measure the density, specific heat, and effective thermal diffusivity of BSA solutions with concentrations 5 ~ 20 wt%. The effective thermal conductivity was then calculated. We found that the energy required in the denaturation process increased with BSA concentration. Same trend can be found in the variation of specific heat. In the thermal diffusivity analysis, LFA couldn’t reveal the true thermal diffusivity when undego denaturation, but reflected the impact of different degrees of thermal denaturation process on heat transfer phenomena. The variation of thermal diffusivity caused by the thermal denaturation process was more dramatic with the increasing concentration. It also showed a linear relation between the thermal diffusivity and durtaion time. The change rate of thermal diffusivity increased with temperature and concentration, which means the increase in the degree of thermal denaturation process.
關鍵字(中) ★ 牛血清蛋白
★ 熱變性
★ 熱傳輸
關鍵字(英) ★ bovine serum albumin
★ thermal denaturation
★ heat transport
論文目次 摘要............................................................................................................................ i
Abstract ..................................................................................................................... ii
誌謝.......................................................................................................................... iii
目錄.......................................................................................................................... iv
圖目錄 ...................................................................................................................... vi
表目錄 ...................................................................................................................... ix
第一章 緒論 ........................................................................................................... 1
1-1 研究背景 ....................................................................................... 1
1-2 研究動機與目的 ............................................................................ 5
1-3 文獻回顧 ....................................................................................... 6
1-4 論文架構 ..................................................................................... 11
第二章 理論基礎與研究方法 .............................................................................. 12
2-1 蛋白質的變性與熱變性 .............................................................. 12
2-2 研究架構 ..................................................................................... 17
2-3 實驗材料與溶液配製 .................................................................. 18
2-4 熱傳理論基礎 .............................................................................. 20
2-4-1 熱傳遞的型式 ............................................................................. 20
2-4-2 熱傳導係數 ................................................................................. 20
2-5 量測方法與數據分析 .................................................................. 22
2-5-1 示差掃描熱量分析 ...................................................................... 22
2-5-2 熱與熱焓關係式 ......................................................................... 26
2-5-3 DSC 量測訊號分析 ..................................................................... 27
2-5-4 雷射閃光熱擴散法 ...................................................................... 28
2-5-5 LFA 量測訊號分析 ..................................................................... 36
第三章 結果與討論 ............................................................................................. 38
3-1 密度量測結果 .............................................................................. 38
3-2 DSC 量測結果 ............................................................................. 42
3-3 LFA 量測結果 ............................................................................. 50
3-4 有效熱傳導係數結果分析 .......................................................... 55
3-5 研究與討論 ................................................................................. 57
第四章 結論與展望 ............................................................................................. 60
4-1 結論 ............................................................................................. 60
4-2 未來展望 ..................................................................................... 60
參考文獻 ................................................................................................................. 62
附錄一 牛血清蛋白產品資料 ................................................................................ 69
附錄二 藍寶石比熱隨溫度之變化 ........................................................................ 70
附錄三 鋁盤比熱隨溫度之變化 ............................................................................ 72
附錄四 牛血清蛋白參考密度 ................................................................................ 73
參考文獻 [1] A. Lervik, F. Bresme, S. Kjelstrup, D. Bedeaux, and J. Miguel Rubi, ”Heat transfer in protein-water interfaces,” Phys Chem Chem Phys, vol. 12, pp. 1610-7, 2010.
[2] B. Huang, H. Kim, and C. Dass, ”Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry,” J Am Soc Mass Spectrom, vol. 15, pp. 1237-47, 2004.
[3] D. Mulvihill and M. Donovan, ”Whey proteins and their thermal denaturation-a review,” Irish Journal of Food Science and Technology, pp. 43-75, 1987.
[4] F. Putnam, The Plasma Proteins V3: Structure, Function, and Genetic Control vol. 3: Elsevier, 2012.
[5] K. Aoki, T. Takagi, and H. Terada, ”Serum Albumin,” ed: Kodansha, Tokyo, 1984.
[6] K. A. Majorek, P. J. Porebski, A. Dayal, M. D. Zimmerman, K. Jablonska, A. J. Stewart, et al., ”Structural and immunologic characterization of bovine, horse, and rabbit serum albumins,” Molecular immunology, vol. 52, pp. 174-182, 2012.
[7] K. Dill and D. Shortle, ”Denatured states of proteins,” Annual review of biochemistry, vol. 60, pp. 795-825, 1991.
[8] N. Campbell and J. Reece, ”Biology 7th ed, International edition,” ed: San Fransisco, 2005.
[9] Baba, Tetsuya, and O. Akira, ”Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements,” Measurement Science and Technology, vol. 12, p. 2046, 2001.
[10] K.-H. Lim, S.-K. Kim, and M.-K. Chung, ”Improvement of the thermal diffusivity measurement of thin samples by the flash method,” Thermochimica Acta, vol. 494, pp. 71-79, 2009.
[11] J. Blumm, A. Lindemann, and S. Min, ”Thermal characterization of liquids and pastes using the flash technique,” Thermochimica Acta, vol. 455, pp. 26-29, 2007.
[12] J. Guo, G. He, Y. Zhang, B. Zhou, T. Luo, S. Du, et al., ”Thermal Diffusivity Measurement of Diamond Films.pdf,” International Journal of Thermophysics, vol. 21, pp. 479-485, 2000.
[13] H. Lee and R. Taylor, ”Thermophysical properties of carbon/graphite fibers and MOD-3 fiber-reinforced graphite,” Carbon, vol. 13, pp. 521-527, 1975.
[14] S. Shaikh, K. Lafdi, and R. Ponnappan, ”Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An experimental study,” Journal of Applied Physics, vol. 101, p. 064302, 2007.
[15] E. P. Oliveira, D. D. Q. Vilar, M. A. da Conceição Silva, C. K. F. da Silva, and Z. E. da Silva, ”THERMOPHYSICAL PROPERTIES ESTIMATION OF MILK USING,” in 14th Brazilian Congress of Thermal Sciences and Engineering, ed, 2012.
[16] P. Gabbott, ”A practical introduction to differential scanning calorimetry,” Principles and applications of thermal analysis, pp. 1-50, 2008.
[17] M. Kodama, S. Takebayash, S.-i. Kidokoro, and H. Uedaira, ”Thermal Transitions and Stability of Fatty Acid-Containing and Defatted Bovine Serum Albumin (BSA),” Netsu Sokutei, vol. 19, pp. 163-169, 1992.
[18] M. Yamasaki, H. Yano, and K. Aoki, ”Differential scanning calorimetric studies on bovine serum albumin: I. Effects of pH and ionic strength,” International journal of biological macromolecules, vol. 12, pp. 263-268, 1990.
[19] G. Barone, C. Giancola, and A. Verdoliva, ”DSC studies on the denaturation and aggregation of serum albumins,” Thermochimica acta, vol. 199, pp. 197-205, 1992.
[20] P. Ross and A. Shrake, ”Decrease in stability of human albumin with increase in protein concentration,” Journal of Biological Chemistry, vol. 263, pp. 11196-11202, 1988.
[21] A. Michnik, K. Michalik, A. Kluczewska, and Z. Drzazga, ”COMPARATIVEDSC STUDYOFHUMANANDBOVINESERUMALBUMIN,” Journal of thermal analysis and calorimetry, vol. 84, pp. 113-117, 2006.
[22] K. Aoki, K. Hiramatsu, K. Kimura, S. Kaneshina, N. Yoshitoyo, and K. Sato, ”Heat Denaturation of Bovine Serum Albumin. I: Analysis by Acrylamide-gel Electrophoresis (Commemoration Issue Dedicated to Professor Rempei Gotoh On the Occasion of his Retirement),” Bulletin of the Institute for Chemical Research, Kyoto University, vol. 47, pp. 274-282, 1969.
[23] M. R. Rodríguez Niño and J. Rodríguez Patino, ”Effect of the aqueous phase composition on the adsorption of bovine serum albumin to the air-water interface,” Industrial & engineering chemistry research, vol. 41, pp. 1489-1495, 2002.
[24] A. Michnik, ”Thermal stability of bovine serum albumin DSC study,” Journal of Thermal Analysis and Calorimetry, vol. 71, pp. 509-519, 2003.
[25] B. K. Park, N. Yi, J. Park, T. Y. Choi, J. Y. Lee, A. Busnaina, et al., ”Thermal conductivity of bovine serum albumin: A tool to probe denaturation of protein,” Applied Physics Letters, vol. 99, p. 163702, 2011.
[26] ”Differential scanning calorimetric studies on bovine serum albuminI. Effects of pH and ionic strength.”
[27] F. Zhang, M. W. Skoda, R. M. Jacobs, R. A. Martin, C. M. Martin, and F. Schreiber, ”Protein interactions studied by SAXS: effect of ionic strength and protein concentration for BSA in aqueous solutions,” The Journal of Physical Chemistry B, vol. 111, pp. 251-259, 2007.
[28] ”Characterization by Optical Methods of the Heat Denaturation of Bovine.”
[29] S. Baier and D. J. McClements, ”Impact of preferential interactions on thermal stability and gelation of bovine serum albumin in aqueous sucrose solutions,” Journal of agricultural and food chemistry, vol. 19, pp. 2600-2608, 2001.
[30] E. Seyrek, P. L. Dubin, C. Tribet, and E. A. Gamble, ”Ionic strength dependence of protein-polyelectrolyte interactions,” Biomacromolecules, vol. 4, pp. 273-282, 2003.
[31] A. Michnik, K. Michalik, and Z. Drzazga, ”Stability of bovine serum albumin at different pH,” Journal of thermal analysis and calorimetry, vol. 80, pp. 399-406, 2005.
[32] M. Yamasaki, H. Yano, K. Tatsumi, and K. Aoki, ”Differential scanning calorimetric studies on bovine serum albumin IV. Effect of anionic surfactants with various lengths of hydrocarbon chain,” International journal of biological macromolecules, vol. 19, pp. 241-246, 1996.
[33] R. A. Curvale, ”Buffer capacity of bovine serum albumin (BSA),” J. Argent. Chem. Soc, vol. 97, pp. 174-180, 2009.
[34] B. Shweitzer, D. Zanette, and R. Itri, ”Bovine serum albumin (BSA) plays a role in the size of SDS micelle-like aggregates at the saturation binding: the ionic strength effect,” J Colloid Interface Sci, vol. 277, pp. 285-91, 2004.
[35] Y. A. Antonov and I. L. Zhuravleva, ”Effect of protein thermo aggregation on the binding of BSA to gelatin type A,” Int J Biol Macromol, vol. 53, pp. 160-7, 2013.
[36] S. K. Baier and D. J. McClements, ”Impact of sorbitol on the thermostability and heat-induced gelation of bovine serum albumin,” Food Research International, vol. 36, pp. 1081-1087, 2003.
[37] B. K. Park, N. Yi, J. Park, and D. Kim, ”Monitoring protein denaturation using thermal conductivity probe,” Int J Biol Macromol, vol. 52, pp. 353-7, 2013.
[38] P. Tompa, P. Banki, M. Bokor, P. Kamasa, D. Kovacs, G. Lasanda, et al., ”Protein-water and protein-buffer interactions in the aqueous solution of an intrinsically unstructured plant dehydrin: NMR intensity and DSC aspects,” Biophys J, vol. 91, pp. 2243-9, 2006.
[39] H. Larsericsdotter, S. Oscarsson, and J. Buijs, ”Structure, stability, and orientation of BSA adsorbed to silica,” J Colloid Interface Sci, vol. 289, pp. 26-35, 2005.
[40] M. A. Masuelli, ”Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements,” Advances in Physical Chemistry, vol. 2013, pp. 1-8, 2013.
[41] T. Chakraborty, I. Chakraborty, S. P. Moulik, and S. Ghosh, ”Physicochemical and conformational studies on BSA-surfactant interaction in aqueous medium,” Langmuir, vol. 25, pp. 3062-3074, 2009.
[42] J. Boye, I. Alli, and A. Ismail, ”Interactions involved in the gelation of bovine serum albumin,” Journal of Agricultural and Food Chemistry, vol. 44, pp. 996-1004, 1996.
[43] K. Dill, D. Alonso, and K. Hutchinson, ”Thermal stabilities of globular proteins,” Biochemistry, vol. 28, pp. 5439-5449, 1989.
[44] M. Yamasaki, H. Yano, and K. Aoki, ”Differential scanning calorimetric studies on bovine serum albumin: II. Effects of neutral salts and urea,” International journal of biological macromolecules, vol. 13, pp. 322-328, 1991.
[45] M. Yamasaki, H. Yano, and K. Aoki, ”Differential scanning calorimetric studies on bovine serum albumin: III. Effect of sodium dodecyl sulphate,” International journal of biological macromolecules, vol. 14, pp. 305-312, 1992.
[46] J. Choi, M. Morrissey, and J. C. Bischof, ”Thermal Processing of Biological Tissue at High Temperatures: Impact of Protein Denaturation and Water Loss on the Thermal Properties of Human and Porcine Liver in the Range 25–80 °C,” Journal of Heat Transfer, vol. 135, p. 061302, 2013.
[47] X. Yu and D. Leitner, ”Vibrational energy transfer and heat conduction in a protein,” The Journal of Physical Chemistry B, vol. 107, pp. 1698-1707, 2003.
[48] K. Nakagawa, A. Hottot, S. Vessot, and J. Andrieu, ”Influence of controlled nucleation by ultrasounds on ice morphology of frozen formulations for pharmaceutical proteins freeze-drying,” Chemical Engineering and Processing: Process Intensification, vol. 45, pp. 783-791, 2006.
[49] N. Yi, B. K. Park, D. Kim, and J. Park, ”Micro-droplet detection and characterization using thermal responses,” Lab Chip, vol. 11, pp. 2378-84, 2011.
[50] N. Yi, D. Kim, and J. Park, ”IN SITU MICRO DROPLET TYPING SYSTEM USING 3ω METHOD,” 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2008.
[51] G. Graziano, F. Catanzano, and G. Barone, ”Prediction of the heat capacity change on thermal denaturation of globular proteins,” Thermochimica acta, vol. 321, pp. 23-31, 1998.
[52] T. Kongraksawech, ”Characterization by optical methods of the heat denaturation of bovine serum albumin (BSA) as affected by protein concentration, pH, ionic strength and sugar concentration,” 2006.
[53] E. Ibanoglu, ”Effect of hydrocolloids on the thermal denaturation of proteins,” Food Chemistry, vol. 90, pp. 621-626, 2005.
[54] A. S. L. Theodore L. Bergman, Frank P. Incropera, David P. DeWitt, ”Fundamentals of heat and mass transfer,” ed: John Wiley & Sons, 2011.
[55] M. O′neill, ”Baseline control for a differential scanning calorimeter,” ed: Google Patents, 1985.
[56] M. O′neill, ”Measurement of Specific Heat Functions by Differential Scanning Calorimetry,” Analytical Chemistry, vol. 38, pp. 1331-1336, 1966.
[57] X. Cao, J. Li, X. Yang, Y. Duan, Y. Liu, and C. Wang, ”Nonisothermal kinetic analysis of the effect of protein concentration on BSA aggregation at high concentration by DSC,” Thermochimica Acta, vol. 467, pp. 99-106, 2008.
[58] ASTM, ”Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry,” 2011.
[59] W. Parker, R. Jenkins, C. Butler, and G. Abbott, ”Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” Journal of applied physics, vol. 32, pp. 1679-1684, 1961.
[60] J. McKay and J. Schriempf, ”Corrections for nonuniform surface‐heating errors in flash‐method thermal‐diffusivity measurements,” Journal of Applied Physics, vol. 47, pp. 1668-1671, 1976.
[61] M. Minges, ”Analysis of thermal and electrical energy transport in Poco AXM-5Q1 graphite,” International Journal of Heat and Mass Transfer, vol. 20, pp. 1161-1172, 1977.
[62] M. MICULESCU, G. COŞMELEAŢĂ, M. BRÂNZEI, and F. MICULESCU, ”Thermal Diffusivity of Materials Using Flash Method Applied on CoCr Alloys ” U.P.B. Sci. Bull., vol. 70, 2008
[63] V. Khuu, ”Evaluation of thermal interface materials and the laser flash method,” Doctor of Philosophy, Mechanical Engineering, Digital Repository at the University of Maryland
University of Maryland (College Park, Md.), 2009.
[64] R. Cowan, ”Pulse Method of Measuring Thermal Diffusivity at High Temperatures,” Journal of Applied Physics, vol. 34, p. 926, 1963.
[65] F. Hemberger, H. P. Ebert, and J. Fricke, ”Determination of the Local Thermal Diffusivity of Inhomogeneous Samples by a Modified Laser-Flash Method,” International Journal of Thermophysics, vol. 28, pp. 1509-1521, 2007.
[66] F. Cernuschi, L. Lorenzoni, P. Bianchi, and A. Figari, ”The effects of sample surface treatments on laser flash thermal diffusivity measurements,” Infrared physics & technology, vol. 43, pp. 133-138, 2002.
[67] T. Azumi, ”Novel finite pulse-width correction in flash thermal diffusivity measurement,” Review of Scientific Instruments, vol. 52, p. 1411, 1981.
[68] S. Min, J. Blumm, and A. Lindemann, ”A new laser flash system for measurement of the thermophysical properties,” Thermochimica Acta, vol. 455, pp. 46-49, 2007.
[69] J. Cape and G. Lehman, ”Temperature and Finite Pulse-Time Effects in the Flash Method for Measuring Thermal Diffusivity,” Journal of Applied Physics, vol. 34, p. 1909, 1963.
[70] D. Tang, B. Zhou, H. Cao, and G. He, ”Dynamic thermal expansion under transient laser‐pulse heating,” Applied physics letters, vol. 59, pp. 3113-3114, 1991.
[71] D. Tang, G. He, B. Zhou, and H. Zhang, ”Effects of finite absorption depth and infrared detector nonlinearity on thermal diffusivity measurement of thin films using the flash method,” Review of scientific instruments, vol. 66, pp. 4249-4253, 1995.
[72] A. Graf, M. Arndt, M. Sauer, and G. Gerlach, ”Review of micromachined thermopiles for infrared detection,” Measurement Science and Technology, vol. 18, p. R59, 2007.
[73] G. Kell, ”Density, thermal expansivity, and compressibility of liquid water from 0. deg. to 150. deg.. Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale,” Journal of Chemical and Engineering Data, vol. 20, pp. 97-105, 1975.
[74] F. P. Incropera, Introduction to heat transfer: John Wiley & Sons, 2011.
[75] Y. Cengel, M. Boles, and M. Kanoğlu, Thermodynamics: an engineering approach , vol. 5, McGraw-Hill New York, 2011.
[76] J. Fischer, ”Carbon nanotubes: structure and properties,” Carbon nanomaterials, pp. 51-58, 2006.
[77] H. O. Pierson, Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications: William Andrew, 1994.
[78] H. Ebadi-Dehaghani and M. Nazempour, ”Thermal conductivity of nanoparticles filled polymers,” Nanotechnology and Nanomaterials:” Smart Nanoparticles Technology”, InTech, pp. 520-538, 2012.
[79] Y. Agari, A. Ueda, Y. Omura, and S. Nagai, ”Thermal diffusivity and conductivity of PMMA/PC blends,” Polymer, vol. 38, pp. 801-807, 1997.
[80] C. T′Joen, Y. Park, Q. Wang, A. Sommers, X. Han, and A. Jacobi, ”A review on polymer heat exchangers for HVAC&R applications,” International Journal of Refrigeration, vol. 32, pp. 763-779, 2009.
[81] M. Hu, D. Yu, and J. Wei, ”Thermal conductivity determination of small polymer samples by differential scanning calorimetry,” Polymer Testing, vol. 26, pp. 333-337, 2007.
[82] B. M. Foley, C. S. Gorham, J. C. Duda, R. Cheaito, C. J. Szwejkowski, C. Constantin, et al., ”Protein Thermal Conductivity Measured in the Solid State Reveals Anharmonic Interactions of Vibrations in a Fractal Structure,” The Journal of Physical Chemistry Letters, vol. 5, pp. 1077-1082, 2014.
[83] A. Hottot, R. Daoussi, and J. Andrieu, ”Thermophysical properties of aqueous and frozen states of BSA/water/Tris systems,” Int J Biol Macromol, vol. 38, pp. 225-31, 2006.
[84] M. Zhang, J. Chen, Z. Che, J. Lu, Z. Zhong, L. Yang, et al., ”Determination of thermal conductivities of biological tissue protein,” in Biomedical Engineering and Informatics (BMEI), 2010 3rd International Conference on, 2010, pp. 1664-1667.
[85] Y. Gu, C.-C. Chen, and Z.-W. Ruan, ”Enzymatic synthesis of conductive polyaniline using linear BSA as the template in the presence of sodium dodecyl sulfate,” Synthetic Metals, vol. 159, pp. 2091-2096, 2009.
[86]_____LadyofHats,”http://en.wikipedia.org/wiki/Protein_structure#mediaviewer/File:Main_protein_structure_levels_en.svg, ”2008
[87] M. John, ”http://youtu.be/SUCgAxI8rhg,”2012
[88]_____METTLER,”http://us.mt.com/us/en/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/DSC/DSC1-new.html,”2014
[89] NETZSCH, LFA 427 - product brochure,2014
[90] J. Bernhardt , H. Pauly,”Partial specific volumes in highly concentrated protein solutions. I. Water-bovine serum albumin and water-bovine hemoglobin,”The Journal of Physical Chemistry, 1975.
指導教授 洪銘聰(Ming-Tsung Hung) 審核日期 2014-12-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明