博碩士論文 101323114 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:44.192.94.177
姓名 邱國豪(Guo-hao Qiu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為
★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響
★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為
★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應
★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響
★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討★ 顆粒外形對顆粒體在滑坡道流動行為之影響及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用離散元素法 (Discrete Element Method, DEM) 模擬可破裂顆粒受到單向度壓縮及儲氫顆粒體吸收與釋放氫氣(體積膨脹與收縮)作用下顆粒體的粉碎行為,本研究的主旨藉由兩種不同的負載模式施加在可破裂顆粒體,來觀察顆粒體粉碎對內部顆粒體的排列、力量傳遞及顆粒體施加在容器壁上壓力的影響,本研究主要分三部分:(1)可破裂顆粒體承受單向度壓縮作用下之粉碎性問題;(2)儲氫顆粒體在承受重覆的吸收與釋放氫氣下(體積膨脹與收縮)之粉碎性問題;(3)三種不同鍵接強度(50N、100N及150N)與三種不同膨脹率(0.03、0.05及0.07)對儲氫顆粒體粉碎行為的影響,第一部分結果顯示,顆粒體在承受單向度壓縮作用下,顆粒體的碎裂是由受壓區 (接近上壓板) 開始向下傳遞,內部接觸力的傳遞在垂直面上為異相性分佈、水平面上為均向性分佈,顆粒鍵接的斷裂影響力量鏈的分佈,第二部分結果顯示儲氫顆粒體在經歷重覆膨脹與收縮下,顆粒體因相互擠壓產生碎裂,且顆粒體碎裂越多時,顆粒粒子體積佔有率逐漸升高,容器壁承受的壓力會隨著粒子體積佔有率逐漸增加,尤其以容器底度最為明顯。第三部分結果顯示三種膨脹率(0.03、0.05及0.07)對三種鍵接強度(50N、100N及150N)造成三種不同的顆粒破裂情形,第一種為顆粒體的破裂程度沒有達到鍵接上限,第二種顆粒體的破裂在較短的回合就已達至鍵接數上限,第三種顆粒體的破裂回合數上升直達鍵接數上限,三種不同的破裂狀況對其粒子體積佔有率的影響為:第一種碎裂狀況的顆粒粒子體積佔有率在整體過程中呈現鬆散狀態;第二種與第三種碎裂狀況的顆粒粒子體積佔有率在整體過程中為緻密的狀況,此兩種顆粒體粒子體積佔有率差異在於緻密程度與整體回合數過程,第三種緻密程度在較短回合數就不再變化,第二種緻密程度是逐步增加,三種破裂狀況對容器壁所承受的壓力變化也會產生影響,第一種狀況的壓力累積小且變化不明顯,第二種狀況整體過程中容器所承受到的壓力變化在較短回合數內有大量累積,第三種狀況壓力變化則是逐漸隨著回合增加累積增加。
摘要(英) This thesis develops the DEM modelling technique with bonding theory to study the pulverization mechanism of particles. The study considers two loading scenarios:(1) pulverization mechanism of LaNi5 alloy particles under confined compression;(2)pulverization mechanism of LaNi5 hydrides subjected to hydriding/dehydriding process. In the latter loading scenario, the effects of bond strength and expansion ratio on the pulverization mechanism are also explored. This study considers three different bond strengths (50N, 100N and 150N) and three different expansion ratios (0.03, 0.05 and 0.07). The internal properties such as crack number, solid fraction, normal and shear stresses, and coordination number were evaluated. The chief conclusions are as follows:
1.The load-displacement response shows bi-linear relationship in confined compression of LaNi5 alloy particles and the cracks gradually form from the top to the bottom.
2.The contact forces in this compressed system exhibit an isotropic distribution on the horizontal plane, but also show a strongly anisotropic distribution on the vertical plane.
3.In the system of LaNi5 hydrides subjected to hydriding/dehydriding process, the crack number increases with hydriding/dehydriding cycle number and most contact bonds are broken due to shear failure.
4.The solid fraction in the assembly of LaNi5 hydrides generally increases with hydriding/dehydriding cycle number, showing the phenomena of particle densification.
5.The normal wall pressure on the cylindrical wall generally increases with cycle number, especially in the lower part of the cylindrical shell. This phenomenon is attributed to the increasing solid fraction.
6.According to the parametric study, the normal wall pressure on the cylindrical wall exhibits three regimes depending on the rupture degree of granules: (1) as the rupture degree of granules is small or insignificant, the normal wall pressure does not show pressure accumulation; (2) as the crack number shortly reaches the upper limit of bonds, the normal wall pressure quickly accumulates; (3) as the crack number gradually reaches the upper limit of bonds, the normal wall pressure accumulates with cycle number, especially in the lower part of the cylindrical shell.
關鍵字(中) ★ 顆粒體壓縮
★ 儲氫顆粒體
★ 離散元素法
★ 顆粒體排列
★ 顆粒體力量傳遞
★ 顆粒體粉碎
關鍵字(英) ★ granular assembly
★ confined compression
★ expanding/contracting process
★ DEM
★ bonding theory
★ force transmission property
★ pulverization mechanism of particles
論文目次 摘要i
Abstractii
目錄iii
附表目錄v
附圖目錄vi
第一章 緒論1
1-1顆粒體壓縮模擬1
1-2 受壓顆粒體之間力量傳遞與力量大小的數量分佈3
1-3 儲氫罐使用與設計所面臨的問題5
1-4 研究動機6
第二章 數值架構8
2-1 離散元素法8
2-1-1離散元素法的接觸力模型8
2-1-2牛頓運動方程式11
2-1-3時間步的決定 13
2-1-4 計算週期14
2-1-5 接觸鍵結模式 (The Contact-Bond Model)14
2-2 模擬架構15
2-3 內部性質16
2-3-1 顆粒粒子體積佔有率16
2-3-2 配位數16
2-3-3 應力17
第三章 結果與討論20
3-1 可破裂顆粒受壓的力學行為20
3-2 可破裂顆粒體積膨脹之力學行為25
3-3參數比較28
第四章 結論33
參考文獻36
參考文獻 [1]P.A.Cundall,O.D.L.Strack,“A discrete numerical model for granular assemblies”, Géotechnique,Vol.29,pp 47–65 ,1979.
[2]D.Markauskas,R.Kačianauskas,“Compacting of particles for biaxial compression test by the discrete element method”, journal of civil engineering and management ,Vol.XII,pp153–161,2006.
[3]P.Redanz,N.A.Fleck,“The compaction of a random distribution of metal cylinders by the discrete element method”,Actamater,Vol.49,pp.4325–4335,2001.
[4]J.R.Williams,N.Rege,“The development of circulation cell structures in granular materials undergoing compression”, Power Technology,Vol.90 ,pp.187-194 ,1997.
[5]K.Odagi,T.Tanaka,K.Yamane,“Dem simulation of compression test of particles”, australia,Vol.127,pp.1–8 ,2002.
[6]C.O′Sullivan,L.Cui,“Micromechanics of granular material response during load reversals : Combined DEM and experimental study”, Power Technology ,Vol.193 ,pp.289-302 ,2009.
[7]K. Iwashita, M. Oda, “Micro-deformation mechanism of shear banding process based on modified distinct element method” ,Powder Technology,Vol.109,pp.192–205,2000.
[8]C.L.Martin,D.Bouvard,“Study of the cold compaction of composite powders by the discrete element method” Acta Materialia,Vol.51,pp373–386 ,2003.
[9]C.-Y.Wu,O.M.Ruddy,A.C.Bentham,B.C.Hancock,S.M.Best, “Modelling the mechanical behaviour of pharmaceutical powders during compaction” ,Powder Technology ,Vol.152, pp.107–117, 2005.
[10]T.S. Majmuder, R.P.Behringer, “Contact force measurements and stress-induced anisotropy in granular materials”,nature,Vol.435,pp.1079–1082,2005.
[11]F.Radjai,S.Roux,J.J.Moreau,“Contact forces in a granular packing”, American Institute of Physics Journals,Vol.9,pp.544–550,1999.
[12]C.Thornton, “Force Transmission in Granular Media”, KONA Power and Particle Journal ,Vol.15 ,pp.81–90,1997.
[13]J.F. Peters, M. Muthuswamy, J. Wibowo, A.Tordesillas, “Characterization of force chains in granular material” , Physical Review E,Vol.72, pp.041307-1–041307-8,2005.
[14]D.M. Mueth, H.M. Jaeger, S.R. Nagel, “Force distribution in a granular medium”,Physical Review E,Vol.57,pp.3164–3169 ,1998.
[15]D.L.Blair,N.W.Mueggenburg,A.H.Marshall,H.M.Jaeger, S. R.Nagel,“Force distributions in three-dimensional granular assemblies:Effects of packing order and interparticle friction”,Physical Review E,Vol.63,pp.041304-1–041304-8,2001.
[16]G.Løvoll,K.J.Måløy,E.G.Flekkøy “Force measurements on static granular materials”,Physical Review E, Vol.60 ,pp.5872–5878 ,1999.
[17]J.M.Erikson,N.W.Mueggenburg,H.M.Jaeger,S.R.Nagel, “Force distributions in three-dimensional compressible granular packs” Physical Review E ,Vol.63, pp.041301
-1–041301-4,2001.
[18]F. Radjai,M.Jean,J.-J.Moreau,S.Roux, “Force Distributions in Dense Two-Dimensional Granular System”, Physical Review Letters.,Vol.77, pp.274–277 ,1996.
[19]H.A.Makse,D.L.Johnson,L.M.Schwartz,“Packing of Compressible Granular Materials” , Physical Review Letters.Vol.84, pp.4160–4163 ,2000.
[20]L.E.Silbert,G.S.Grest,J.W.Landry,“Statistics of the contact network in frictional and frictionless granular packings” , Physical Review E,Vol.66 ,pp.061303-1–061303-9,2002.
[21]S.J. Antony, “Evolution of force distribution in three-dimensional granular media”,Physical Review E, Vol.63,pp.011302-1–011302-13 ,2000.
[22]C.-h. Liu,S.R.Nagel,D.A.Schecter,S.N.Coppersmitj,S. Majumdar,O.Narayan,T.A.Witten, “Force Fluctuations in Bead packs”,Science,Vol.269,pp.513–515,1995.
[23]P.D. profio, S. Arca, F. Rossi, M. Filipponi, “Comparison of Hyfrogeh hydrates with existing hydrogen storge technologies : Energetic and economic evaluations”,International Journal of Hydrogen energy, Vol.34, pp.9173–9180 ,2009.
[24]K.Nasako,Y.Ito,N.Hiro,M.Osumi, “Stress on a reaction vessel by the swelling of a hydrogen absorbing alloy” ,Journal of Alloys and Compounds , Vol.264 , pp.271–276 ,
1998.
[25]B.Y.Ao,S.X.Chen,G.Q.Jiang,“A study on wall stresses induced by LaNi5 alloy hydrogen absorption–desorption cycles”,Journal of Alloys and Compounds ,Vol.390,pp.122–126,2005.
[26]F.Qin,L.H.Guo,J.P.Chen,Z.J.Chen,“Pulverization, expansion of La0.6Y0.4Ni4.8Mn0.2 during hydrogen absorption–desorption cycles and their influences in thin-wall reactors” ,International journal of hydrogen energy,Vol.33,pp.709–717,2008.
[27]C.-K. Lin, S.-M. Huang, Y.-H. Jhang, “Effects of cyclic hydriding–dehydriding reactions of Mg2Ni alloy on the expansion deformation of a metal hydride storage vessel” ,Journal of Alloys and Compounds ,Vol.509 ,pp.7162–7167 ,2011.
[28]陳彥均,「罐體設計對 LaNi5 儲氫合金罐膨脹變形之影響」,國立中央大學,碩士論文,民國99。
[29]黃振維,「LaNi5 與 La0.6Ce0.4Ni5 儲氫合金罐膨脹變形分析」,國立中央大學,碩士論文,民國100。
[30]L.-Guerrero, L.E. Vallejo, L.F. Vesga, “Visualization of Crushing Evolution in Granular Materials under Compression Using DEM” ,International Journal of Geomechanics, Vol.6, pp.195–200, 2006.
[31]M. jiang, S. Leroueil, J.-M. Konrad, “Yielding of Microstructured Geomaterial by Distinct Element Method Analysis” ,Journal of Engineering Mechanics ,Vol.131 , pp.1209–1213, 2006.
[32]Y. Tsuji, T. Kawaguchi, T. Tanaka, “Discrete particle simulation of two-dimensional fluidized bed” ,Powder Techology ,Vol.77 ,pp.79–87,1993.
[33]Y.C. Chung, H.H. Liao, S.S. Hsiau, “Convection behaxior of non-spherical particles in a vibrating bed : Discrete element modeling and experimental validation” ,Powder Technology ,Vol.237 ,pp.53–66 ,2013.
[34]M.D. Silva, J. Rajchenbach, “Stress transmission through a model system of cohesionless elastic grains” ,Nature , Vol.406 ,pp708–710 ,2000.
[35]C.Goldenberg,I.Goldhirsch,“Force Chains,
Microelasticity, and Macroelasticity” , Physical Review Letters. Vol.89, pp.084302-1–084302-4 , 2002.
[36]J. Geng, D. Howell, E. Longhi, E. Clément,“Footprints in Sand: The Response of a Granular Material to Local Perturbations” , Physical Review Letters. Vol.87,pp.035506-1–035506-4,2001.
[37]N.W. Mueggenburg, H.M. Jaeger, S.R. Nagel, “Stress transmission through three-dimensional ordered granular arrays” , Physical Review E ,Vol.66, 031304-1–031304-9 ,2002.
指導教授 鍾雲吉 審核日期 2016-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明