博碩士論文 101323116 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.81.29.254
姓名 葉立強(YE,LI-CIANG)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微流體系統應用於機械力刺激人體膀胱癌細胞之研究
相關論文
★ 多重微流體晶片機械應力刺激細胞培養之研究★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究
★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)★ 奈米矽質譜晶片於質譜檢測之應用研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 微滾軋製程應用於高分子材料轉印微結構之研究
★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究★ 利用熱壓製造類多孔隙介質之 微流道模型研究
★ 單晶矽材料電化學放電鑽孔及同軸電度之研究★ 微流道中液滴成形及滴落現象之模擬分析
★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用
★ 應用磁性粒子於微流體裝置之可逆接合★ 運用慣性感測器於遠距復健之偵測與診斷
★ 裝置於微流體晶片上的環狀超聲波共振壓電片套用於微流體技術與質譜儀分析之間的介面應用★ Fabrication of 2.5D Micromodel for Air-Liquid Interaction Experiment
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要
本研究的目的是設計一個機械力刺激人體膀胱癌細胞的微流體晶片,機械力包括了剪應力與正向應力。微流體晶片上有三條流道,每條流道分別有3個培養區做細胞培養,透過Syringe pump和閥門的控制分別對每條流道施加三種剪應力,再對培養區上方施加正向應力。
在對人體膀胱癌細胞刺激之前,分別對裝置中的機械力做裝置上的測試,剪應力測試使用一般染色液檢測閥門的緊密度,確保每條流道只受到單一剪應力;正向應力測試使用螢光染液觀察培養區螢光強度的變化,用來檢查培養區不會因受到外力而變形。
最後,我們將人體膀胱癌細胞(TCC)培養在微流體晶片的培養區中,分別對細胞施加3組剪應力刺激10分鐘(0.0018 dyne/cm2、0.044 dyne/cm2、0.66 dyne/cm2。),再對每組施加3組正向應力刺激1個小時(0KPa、10KPa、100KPa),之後在培養箱中培養24小時,對每組受到不同刺激參數細胞進行拍照,比較刺激前與刺激後的細胞數目。實驗結果顯示受到最大剪應力刺激的細胞,細胞數目有減少的趨勢;0KPa與10KPa正向應力刺激對細胞數量呈現正成長,到了100KPa細胞數目呈現了負成長。
摘要(英) Abstract
The purpose of this study is to design a mechanical force to stimulate human bladder cancer cell microfluidic chips, mechanical forces, including the shear stress and the normal stress. The microfluidic chip has three channel, each channel has three cultures area were to do in cell culture, three shear stress is applied to each flow path through Syringe pump and control valve, respectively. And then application of normal stress on cultures area.
Human bladder carcinoma (TCC) cultured in the area of the microfluidic chip, the cells were applied to three kinds of shear stress stimulation 10 minutes (0.0018 dyne / cm2,0.044 dyne / cm2,0.66 dyne / cm2.), and then the each of three shear stress applied normal stress stimulation one hour (0KPa, 10KPa, 100KPa), then cultured in an incubator for 24 hours, subject to different stimulation parameters for each group cells were photographed, the number of stimulation cells before and after.
Experimental results show that by the cell, the cell number of the maximum shear stress stimulation downward trend; 0KPa and 10KPa normal stress stimulation on the number showed positive growth, the number of cells to 100KPa presented negative growth.
關鍵字(中) ★ 微流體晶片 關鍵字(英)
論文目次 目錄
摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1前言 1
1-2文獻回顧 2
1-3研究動機及目的 9
1-4論文架構 10
第二章 實驗設計與方法 11
2-1材料選擇 11
2-2微流體晶片製程 13
2-2-1黃光製程 14
2-2-2光罩製作 16
2-2-3氣閥層母模製作(負光阻) 17
2-2-4流道層母模製作(正光阻) 21
2-2-5 PDMS翻模 24
2-2-6晶片封裝 26
2-3程式的設計 29
2-4實驗系統架設 31
2-4-1微流體晶片 32
2-4-2剪應力刺激 33
2-4-3正向應力刺激 33
2-4-4程式系統控制 33
2-5細胞繁殖培養 34
2-5-1藥品配製 35
2-5-2細胞繼代 37
2-5-3冷凍細胞與解凍 38
2-6晶片培養細胞流程 39
2-6-1微流體晶片滅菌 39
2-6-2細胞植入晶片 41
2-6-3細胞數量計算 42
第三章 結果與討論 43
3-1晶片設計 43
3-2實驗流程 44
3-3剪應力與正向應力參數設定 45
3-3-1剪應力 45
3-3-2正向應力 46
3-3-3剪應力與正向應力實驗 46
3-4檢測正向應力方法 47
3-4-2檢測步驟 47
3-4-3檢測結果 50
3-5檢測剪應力與晶片方法 53
3-5-1實驗步驟與結果 54
3-6細胞受到機械刺激後之結果 55
3-6-1剪應力刺激細胞影響 56
a、 施予S1-N1(0.0018 dyne/cm2&0Kpa) 57
b、施予S2-N1(0.044 dyne/cm2&0Kpa) 57
c、施予S3-N1(0.66 dyne/cm2&0Kpa) 57
d、施予S1-N2(0.0018 dyne/cm2&10Kpa) 59
e、施予S2-N2(0.044 dyne/cm2&10Kpa) 59
f、施予S3-N2(0.66 dyne/cm2&10Kpa) 59
g、施予S1-N3(0.0018 dyne/cm2&100Kpa) 60
h、施予S2-N3(0.044 dyne/cm2&100Kpa) 61
i、施予S3-N3(0.66 dyne/cm2&100Kpa) 61
3-6-2正向應力刺激細胞影響 63
第四章 結論與未來展望 65
4-1結論 65
4-2未來展望 66
參考文獻 67
參考文獻 參考文獻
[1] 衛生福利部國民健康署, "癌症防治組," 2014.
[2] IARC, "Global battle against cancer won’t be won with treatment alone
Effective prevention measures urgently needed to prevent cancer crisis," 3 February 2014.
[3] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and P. Walter., " Molecular biology of the Cell. ," 2002.
[4] A. Sterodimas, J. de Faria, W. E. Correa, and I. Pitanguy, ”Tissue engineering and auricular reconstruction: a review,” Journal of Plastic, Reconstructive & Aesthetic Surgery, vol. 62, pp. 447-452, 2009.
[5] R. Pörtner, S. Nagel-Heyer, C. Goepfert, P. Adamietz, and N. M. Meenen, ”Bioreactor design for tissue engineering,” Journal of Bioscience and Bioengineering, vol. 100, pp. 235-245, 2005.
[6] D. L. Butler, S. A. Goldstein, and F. Guilak, ”Functional Tissue Engineering: The Role of Biomechanics,” Journal of Biomechanical Engineering, vol. 122, pp. 570-575, 2000.
[7] Y.-C. Toh, C. Zhang, J. Zhang, Y. M. Khong, S. Chang, V. D. Samper, D. van Noort, D. W. Hutmacher, and H. Yu, ”A novel 3D mammalian cell perfusion-culture system in microfluidic channels,” Lab on a Chip, vol. 7, pp. 302-309, 2007.
[8] A. Y. Hsiao, Y.-s. Torisawa, Y.-C. Tung, S. Sud, R. S. Taichman, K. J. Pienta, and S. Takayama, ”Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids,” Biomaterials, vol. 30, pp. 3020-3027, 2009.
[9] A. Glücksmann, ”Studies on bone mechanics in vitro. II. The role of tension and pressure in chondrogenesis,” The Anatomical Record, vol. 73, pp. 39-55, 1939.
[10] C. A. L. Bassett and I. Herrmann, ”Influence of Oxygen Concentration and Mechanical Factors on Differentiation of Connective Tissues in vitro,” Nature, vol. 190, pp. 460-461, 1961.
[11] J. C. F. Dewey, S. R. Bussolari, J. M. A. Gimbrone, and P. F. Davies, ”The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress,” Journal of Biomechanical Engineering, vol. 103, pp. 177-185, 1981.
[12] X. Bao, C. B. Clark, and J. A. Frangos, Temporal gradient in shear-induced signaling pathway: involvement of MAP kinase, c-fos, and connexin43 vol. 278, 2000.
[13] M. K. e. al., ”Effects of hydrostatic pressure and transforming growth factor-b3 on adult human mesenchymal stem cell chondrogenesis in vitro.,” Tissue Engineering., pp. 12:1419-1428, 2006.
[14] J. Heyland, K. Wiegandt, C. Goepfert, S. Nagel-Heyer, E. Ilinich, U. Schumacher, and R. Pörtner, ”Redifferentiation of chondrocytes and cartilage formation under intermittent hydrostatic pressure,” Biotechnology Letters, vol. 28, pp. 1641-1648, 2006/10/01 2006.
[15] E. Figallo, C. Cannizzaro, S. Gerecht, J. A. Burdick, R. Langer, N. Elvassore, and G. Vunjak-Novakovic, ”Micro-bioreactor array for controlling cellular microenvironments,” Lab on a Chip, vol. 7, pp. 710-719, 2007.
[16] W. Zheng, Y. Xie, W. Zhang, D. Wang, W. Ma, Z. Wang, and X. Jiang, ”Fluid flow stress induced contraction and re-spread of mesenchymal stem cells: a microfluidic study,” Integrative Biology, vol. 4, pp. 1102-1111, 2012.
[17] 姜孟志, ”設計微流體晶片應用於人體胎盤幹細胞的. 物理/化學誘導分化之研究,” 2011.
[18] M. A. Unger, C. Hou-Pu, T. Thorsen, A. Scherer, and et al., ”Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, vol. 288, pp. 113-6, 2000 Apr 07 2000.
[19] K. Yu Chang, J. H. Kang, P. Sang-Jin, Y. Eui-Soo, and P. Je-Kyun, ”Compressive Cell Stimulation using PDMS Membrane Deflection in a Microfluidic Device,” in Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International, 2007, pp. 1873-1876.
[20] T. K. Kim and O. C. Jeong, ”Intracellular calcium-expression-display (ICED) device operated by compressive stimulation of cells,” Microelectronic Engineering, vol. 98, pp. 703-706, 2012.
[21] T. Xu, W. Yue, C.-W. Li, X. Yao, and M. Yang, ”Microfluidics study of intracellular calcium response to mechanical stimulation on single suspension cells,” Lab on a Chip, vol. 13, pp. 1060-1069, 2013.
[22] H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, ”SU-8: a low-cost negative resist for MEMS,” Journal of Micromechanics and Microengineering, vol. 7, p. 121, 1997.
[23] 余明翰, ”靜水壓對細胞分化及增生影響的實驗研究,” 2011.

指導教授 曹嘉文 審核日期 2014-12-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明