博碩士論文 101323601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:52.87.176.39
姓名 吳啟斌(Qi-bin Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 基於全內反射波長調制外差干涉術小角度測量
(Small-angle Measurement Based on Total Internal Reflection Using Wavelength-modulated Heterodyne Interferometry)
相關論文
★ 外差光學式光柵干涉儀之研究★ Mirau干涉共焦術應用於奈米階高試片量測之研究
★ MOCVD晶圓表面溫度即時量測系統之開發★ MOCVD晶圓關鍵參數即時量測系統開發
★ 雷射干涉儀於共焦顯微系統之軸向定位控制★ 全場相位式表面電漿共振技術
★ 偏振干涉術使用在量測旋光效應及葡萄糖濃度★ 波長調制外差式光柵干涉儀之研究
★ 攝像模組之影像品質評價系統★ 雷射修整之高速檢測-於修整TFT-LCD SHORTING BAR電路上之應用
★ 光強差動式表面電漿共振感測術之研究★ 準共光程外差光柵干涉術之研究
★ 波長調制外差散斑干涉術之研究★ 全場相位式表面電漿共振生醫感測器
★ 利用Pigtailed Laser Diode 光學讀寫頭在角度與位移量測之研究★ 準共光程干涉術之新式大尺度定位平台之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光學測角法中,光學內反射相位法運用的是偏振光的特性,具有對環境要求不高、測量範圍可調與體積小等優點,在生產線即時測量與空間受限的場合具有潛在的運用價值。但是目前的光學內反射相位測角法的研究由於普遍使用昂貴的電光調制器等移頻器件,限制了它的應用。鑑於此研究動機,本文通過直接對雷射波長進行調制,以達到外差干涉的效果,實驗驗證了其可行性外並開發了一新型差分共光路光學架構,具有體積小、架構簡單與成本低等優點。
論文中主要進行了兩個光學架構的研究,一個為以驗證性為目的的單光路光學架構,另一個為新型差分共光路光學架構,即在單光路光學架構的基礎上,僅增加一個1/4波片和反射鏡就實現差分光路的效果。研究中通過函數發生器產生調制訊號直接調制雷射波長,旋轉平台角度變化訊息載入全反射相位變化效應下具有光程差的P光和S光的相位,最後運用示波器直接擷取外差訊號相位。
實驗測量結果與理論基本相符合,測量特性分析主要包括靈敏度、解析度、線性化處理、相對折射率因素、相位穩定性與誤差分析。差分共光路光學架構中,除去正入射零點測量,測量範圍約達到10度,靈敏度達到700,解析度達到0.0014度。
摘要(英) Taking the advantages of polarized light’s characteristics, the method of measuring small angle based on total internal reflection has the advantages of being susceptible to environmental impact, adjustable measuring range and small size in the field of optical angle measurement which could make it possess the potential applications in on-line measurement and space-constrained fields. However, the widespread use of electro-optic modulator devices such as the expensive frequency shift which limits its applications. In order to solve this problem, the thesis develops a new method to modulate the wavelength of laser directly called wavelength-modulated heterodyne interferometry , the validity of this method is demonstrated. What’s more, a new differential common-path optical configuration has been developed, and it has the advantages of simple structure, small size and low cost.
There are two optical configurations studyed in the thesis. One is called single optical path configuration studied to verify the method of wavelength-modulated heterodyne interferometry’s feasibility. The other configuration called differential common-path optical configuration adds one quarter-wave plate and a mirror on the basis of a single path configuration. The modulated signals produced by the FG(function generator) is used to modulate the wavelength of laser. Due to the total reflection effect, the angular variations of the rotation stage is loaded in the phases of P light and S light which own the optical path difference. Finally, an oscilloscope is used to measure the phases of the heterodyne signals.
The experimental results are in agreement with the theoretical analysis. The analysis of the measurement characteristics include sensitivity, resolution, linearization, relative refractive index factors, the stability of the phases and the error analysis. In regard to the differential common-path optical configuration, the measurement range is about 10 degrees except the nomal incidence, the best sensitivity is 700 and the best resolution is 0.0014 degrees.
關鍵字(中) ★ 全內反射
★ 波長調制
★ 外差干涉
★ 小角度測量
關鍵字(英) ★ The total internal reflection
★ Wavelength-modulated
★ Heterodyne interferometry
★ Small angle measurement
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
符號說明 ix
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1 光學內反射光強測角法 3
1-2-2 光學內反射相位測角法 5
1-2-2 波長調制外差干涉法 10
1-3 研究動機、目的與方法 12
1-4 章節介紹 13
第二章 基礎理論 14
2-1 全反射相位變化 14
2-2 外差干涉法 17
2-3 波長調制外差干涉訊號 18
2-4 相位解調 24
2-5 小結 25
第三章 實驗架構 26
3-1 元器件規格 26
3-2 光學架構 27
3-2-1光源系統架構 27
3-2-2 單光路訊號載入系統光學架構 29
3-2-3新型差分共光路訊號載入系統光學架構 32
3-2-4 相位解調系統架構 35
3-3 小結 37
第四章 實驗結果與討論 38
4-1 外差訊號的產生 38
4-2 單光路光學架構 39
4-2-1 實驗結果 39
4-2-2 靈敏度分析 43
4-2-3 解析度分析 44
4-2-4 相位穩定性分析 45
4-3 新型差分共光路光學架構 46
4-3-1 實驗結果 46
4-3-2 靈敏度分析 50
4-3-3 解析度分析 52
4-3-4 相對折射率因素分析 53
4-3-5 線性分析 54
4-3-6 相位穩定性分析 56
4-4 誤差分析 57
4-4-1 相對折射率變化誤差 59
4-4-2 架構誤差 60
4-4-3 相位測量誤差 61
4-4-4 環境因素誤差 61
4-5 小結 62
第五章 結論與未來展望 63
5-1 結論 63
5-2 未來展望 64
參考文獻 65
參考文獻 [1] А.В.Мироненко 和 劉志國, 「數字式光柵測量儀」, 國外計量, (05), 17-18頁, 1989。
[2] 張琢、 李鵬生、 強錫富、 任順清、 和 陳軍, 「測角技術國內外發展概況」, 宇航計測技術, (04), 4-10頁, 1994。
[3] 浦昭邦、 陶衛、 和 張琢, 「角度測量的光學方法」, 光學技術, 28(2), 4頁, 2002。
[4] G. Margheri, A. Mannoni, and F. Quercioli, "High-resolution angular and displacement sensing based on the excitation of surface plasma waves", Applied optics, vol 36(19), pp. 4521-4525, 1997.
[5] Y. Wang, C. Yan, and Z. Gao, "Angle measurement with laser", Applied Mechanics and Materials, vol 239-240, pp. 206-213, 2013.
[6] J. Yuan, X. Long, and K. Yang, "Temperature-controlled autocollimator with ultrahigh angular measuring precision", Review of Scientific Instrum-ents, vol 76(12), p. 125106, 2005.
[7] S. T. Lin, K. T. Lin, and W. J. Syu, "Angular interferometer using calcit-e prism and rotating analyzer", Optics Communications, vol 277(2), pp. 251-255, 2007.
[8] P. S. Huang, S. Kiyono, and O. Kamada, "Angle measurement based on the internal-reflection effect: a new method", Applied optics, vol 31(28), pp. 6047-6055, 1992.
[9] P. S. Huang and J. Ni, "Angle measurement based on the internal-reflecti-on effect and the use of right-angle prisms", Applied optics, vol 34(22), pp. 4976-4981, 1995.
[10] 徐新行、 楊洪波、 王兵、 和 高云國, 「快速反射鏡關鍵技術研究」, 激光與紅外, 43(10), 1095-1101頁, 2013。
[11] 王清明、 盧澤生、 和 董申, 「機械加工在線測量技術綜述」, 計量技術, (04), 3-5頁, 1999。
[12] M. H. Chiu and D. C. Su, "Angle measurement using total-internal-reflect-ion heterodyne interferometry", Optical Engineering, vol 36(6), pp. 1750- 1753, 1997.
[13] M. H. Chiu and D. C. Su, "Improved technique for measuring small angl-es", Applied optics, vol 36(28), pp. 7104-7106, 1997.
[14] M. H. Chiu, S. F. Wang, and R. S. Chang, "Instrument for measuring small angles by use of multiple total internal reflections in heterodyne int-erferometry", Applied optics, vol 43(29), pp. 5438-5442, 2004.
[15] S. F. Wang, H. S. Tsai, Y. Chu, J. H. Wei, Y. F. Chau, A. L. Liu, and F. H. Kao, "Improved Small-Angle Sensor Based on Total-Internal Reflec-tion and Surface Plasmon Resonance in Heterodyne Interferometry", Sens-ors and Materials, vol 25(6), pp. 417-422, 2013.
[16] J. Y. Lin and Y. C. Liao, "Small-angle measurement with highly sensitive total-internal-reflection heterodyne interferometer", Applied optics, vol 53(9), pp. 1903-1908, 2014.
[17] M. Sargent, W. E. Lamb, and R. L. Fork, "Theory of a Zeeman Laser. I", Physical Review, vol 164(2), pp. 436-449, 1967.
[18] W. H. Stevenson, "Optical frequency shifting by means of a rotating diff-raction grating", Applied optics, vol 9(3), pp. 649-652, 1970.
[19] D. C. Su, M. H. Chiu, and C. D. Chen, "A heterodyne interferometer us-ing an electro-optic modulator for measuring small displacements", Journal of Optics-Nouvelle Revue d′Optique, vol 27(1), pp. 19-24, 1996.
[20] S. G. Nelson, K. S. Johnston, and S. S. Yee, "High sensitivity surface pl-asmon resonace sensor based on phase detection", Sensors and Actuators B: Chemical, vol 35(1–3), pp. 187-191, 1996.
[21] D. C. Su, M. H. Chiu, and C. D. Chen, "Simple two-frequency laser", Precision Engineering, vol 18(2–3), pp. 161-163, 1996.
[22] K. Tatsuno and Y. Tsunoda, "Diode laser direct modulation heterodyne in-terferometer", Applied optics, vol 26(1), pp. 37-40, 1987.
[23] P. S. Huang and Y. Li, "Small-angle measurement by use of a single pri-sm", Applied optics, vol 37(28), pp. 6636-6642, 1998.
[24] P. S. Huang, "Use of thin films for high-sensitivity angle measurement", Applied optics, vol 38(22), pp. 4831-4836, 1999.
[25] A. Zhang and P. S. Huang, "Total internal reflection for precision small- -angle measurement", Applied optics, vol 40(10), pp. 1617-1622, 2001.
[26] W. Zhou and L. Cai, "Interferometer for small-angle measurement based on total internal reflection", Applied optics, vol 37(25), pp. 5957-5963, 1998.
[27] W. Zhou and L. Cai, "Improved angle interferometer based on total inter-nal reflection", Applied optics, vol 38(7), pp. 1179-1185, 1999.
[28] S. F. Wang, M. H. Chiu, C. W. Lai, and R. S. Chang, "High-sensitivity small-angle sensor based on surface plasmon resonance technology and h-eterodyne interferometry", Applied optics, vol 45(26), pp. 6702-6707, 2006.
[29] W. Shinn Fwu, K. Fu Hsi, L. An Li, C. Jyh Shyan, W. Lai, H. Meng Feng, and C. Hung Chen, "New type small-angle sensor based on the su-rface plasmon resonance technology in heterodyne interferometry," Proc. Instrumentation and Measurement Technology Conference (I2MTC), 2011 IEEE, pp. 1-4, Binjiang, Hang Zhou, May 2011.
[30] J. Chen, Y. Ishii, and K. Murata, "Heterodyne interferometry with a freq-uency-modulated laser diode", Applied optics, vol 27(1), pp. 124-128, 1988.
[31] Y. Ishii, J. Chen, R. Onodera, and T. Nakamura, "Phase-shifting Fizeau interference microscope with a wavelength-shifted laser diode", Optical Engineering, vol 42(1), pp. 60-67, 2003.
[32] R. Onodera and Y. Ishii, "Phase-shift-locked interferometer with a wavele-ngth-modulated laser diode", Applied optics, vol 42(1), pp. 91-96, 2003.
[33] J. Y. Lee, K. Y. Lin, and S. H. Huang, "Wavelength-modulated heterody-ne speckle interferometry for displacement measurement," Proc. SPIE 7389, p. 73892G, Munich, Germany, June 2009.
[34] J. Y. Lee, M. P. Lu, K. Y. Lin, and S. H. Huang, "Measurement of in-plane displacement by wavelength-modulated heterodyne speckle interfer-ometry", Applied optics, vol 51(8), pp. 1095-1100, 2012.
[35] J. Y. Lee, L. W. Mai, C. C. Hsu, and Y. Y. Sung, "Enhanced sensitivity to surface plasmon resonance phase in wavelength-modulated heterodyne interferometry", Optics Communications, vol 289(0), pp. 28-32, 2013.
[36] G. A. Jiang and J. Y. Lee, "Wavelength Phase-Shift Dual-Diffraction Inte-rferometer", Smart Science, vol 2(3), pp. 139-143, 2014.
[37] 鬱道銀 和 谈恒英, 工程光學, 三版, 機械工業出版社, 北京, 2011年。
[38] S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, "Direct frequency modulation in AlGaAs semiconductor lasers", IEEE J. Quantum Electron., vol 18(4), pp. 582-595, 1982.
[39] 蘇小平、 余懷之、 褚乃林、 和 黃炫云,「半導體材料的紅外光學特性及應用」, 稀有金屬, 21(06), 469-474頁, 1997。
[40] THORLABS: DL3148。 2015年3月9日, 取自 http://www.thorlabschina.cn/thorProduct.cfm?partNumber=DL3148-025。
[41] 蘇美開、 倪國強、 和 左眆, 「頻率紅移法用於激光二極管熱阻測量」,光電工程, 34(05), 48-51頁, 2007。
[42] 胡劍 和 張小頻: 半導體激光器驅動的設計和實現, 2015年3月9日,取自 https://www.google.com.tw/?gws_rd=ssl#q=%E5%8D%8A%E5%B0%8E%E9%AB%94%E6%BF%80%E5%85%89%E5%99%A8%E9%A9%85%E5%8B%95%E7%9A%84%E8%A8%AD%E8%A8%88%E5%92%8C%E5%AF%A6%E7%8F%BE。
[43] 韩劲松、 赵洋、 李达成、 曹芒、 和 王佳,「線性調頻半導體激光定位的研究」, 航空精密制造技术, (02), 42-44頁, 1995。
[44] J. Zheng, "Analysis of optical frequency-modulated continuous-wave interf-erence", Applied optics, vol 43(21), pp. 4189-4198, 2004.
[45] 李瑋, 示波器的使用與檢測技巧, 初版, 化學工業出版社, 北京, 2008年。
[46] THORLABS: 元器件規格, 2015年3月9日, 取自 http://www.thorlabschina.cn/navigation.cfm。
[47] 朱茂華、 黃德康、 和 鐘福艷, 「半導體激光器的電流調制特性研究」,大學物理實驗, 16(04), 14-15頁, 2003。
[48] 邱成鋒,「金屬反射鏡的偏振特性及其正交反射消偏研究」, 中國科學院合肥物質科學研究, 碩士論文, 2007。
[49] A. Macleod, "Polarization in optical coatings," Proc. SPIE 5875, pp. 587504-587504-587514, San Diego, USA, July 2005.
[50] 百度百科: 誤差分析, 2015年3月9日, 取自 http://baike.baidu.com/view/10906606.htm。
[51] 武漢大學化學與分子科學基礎實驗教學中心: 誤差分析, 2015年3月9日, 取自 http://chemlab.whu.edu.cn/chem/courseware/whindex/xl/1-2-1.htm。
[52] 楊軍, 劉志海, 和 苑立波,「波片對偏振激光干涉儀非線性誤差的影響」, 光子學報, 37(2), 6頁, 2008。
[53] THORLABS: 直角三稜鏡, 2015年3月9日, 取自 https://www.thorlabschina.cn/newgrouppage9.cfm?objectgroup_id=142。
指導教授 李朱育(Ju-Yi Lee) 審核日期 2015-4-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明