博碩士論文 101324001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.237.71.23
姓名 陳冠中(Kuan-Chung Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 柱狀自泳動粒子之擴散行為與沉降平衡
(Diffusion and Sedimentation Equilibrium of Rodlike Nano-Swimmers)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 過氧化氫的界面性質與穩定性
★ 液橋分離與液面爬升物體之研究★ 電潤濕動態行為探討
★ 表面粗糙度對接觸角遲滯影響之效應★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象
★ 低溫還原氧化石墨烯薄膜★ 雙離子型磺基甜菜鹼基材之潤濕現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自泳動粒子為具備有自我推進而通過周遭流體能力的物體,在自然界中諸如魚類群游、鳥類群飛,或是許多常見細菌如大腸桿菌、衣藻等,近年來許多科學家極力探討有關這些細菌的運動行為。在微觀尺度上,這些自泳動粒子大多有著類似的運動方式,它們會朝著一個方向做直線運動,經過一段時間後,以極短暫的時間停住然後轉向,接著再重複同樣的過程,這種運動模式我們稱之為run-and-tumble motion。在微觀尺度下布朗運動(Brownian motion)會對粒子運動產生影響,布朗運動所造成的轉動擴散(Rotation diffusion)會影響到自泳動粒子行直線運動的時間,意即自泳動粒子在還未tumble之前,其運動方向就已經不再是直線。
  本研究採用耗散粒子動力學法,模擬pusher類型的桿狀自泳動奈米粒子於有限及無限邊界系統中的運動行為。首先,在無限邊界系統中研究一般奈米硬桿的轉動擴散以及傳送擴散。較長的奈米硬桿擁有較大的轉動擴散係數(rotational diffusivity, Dθ),意即較長的硬桿較難改變運動方向,而傳送擴散係數(translational diffusivity, D)會隨著奈米硬桿的長度增加而變小,意即較長的硬桿其擴散速率較小。接著,我們施予奈米硬桿一個作用力(active force, FA),使其獲得泳動的能力,並在無限邊界系統中討論其轉動擴散以及傳送擴散。自泳動奈米硬桿與一般奈米硬桿擁有相同的轉動擴散係數,此外,自泳動硬桿的傳送擴散係數則會與作用力平方及硬桿轉彎所需時間成正比。最後,將自泳動硬桿置於有邊界系統中,以觀察沉降平衡時的變化。當系統達平衡時,自泳動硬桿的濃度分布較為膨潤,且自泳動硬桿的運動方向與重力所施加的方向相反,產生polar order的現象。
摘要(英) Self-propelled micro-swimmers are biological organisms or synthetic objects that propel themselves through the surrounding fluids. Examples are swimming fish, flying birds, or various swimming bacteria such as Escherichia coli and the green alga Chlamydomonas reinhardtii, etc. In the microscale living system, most of self-propelled bacteria have the same pattern of motion, which they move along one direction with linear motion, after a period of time, they stop suddenly and turn to another direction, and then they repeat the same process. This motion mode is called run-and-tumble motion. The trajectory of its motion is linear in a short interval, then punctuated by sudden and rapid randomizations in direction. However, the motion of the particles will be affect by Brownian motion in microscopic study. The particle will change the direction of the movement because rotational Brownian motion. In other words, the particle won’t move straightly before it tumbles.
In this study, dissipative particle dynamics (DPD) is employed to simulate the rod-like self-propelled nano-swimmers in bounded/unbounded system. For the unbounded system, it is found that the longer nano-rods have the lower rotational diffusivity (Dθ), and the lower translational diffusivity (D). It means, the longer nano-rods need more time to change the direction of the movement, and the rate of the diffusion is lower. Additionally, the nano-rods become the self-propelled nano-swimmers from the active force (FA). The rotational diffusivity of the nano-swimmers is the same as the nano-rods. Both the square of the amount of active force and the time of the nano-swimmers changing the direction of the movement are directly proportional to the diffusivity of the nano-swimmers. For the sedimentation equilibrium, it is found that the sedimentation length of the nano-swimmers is higher than the nano-rod. In addition, the nano-swimmers exhibit polar order under gravity. It means, the nano-swimmers proceed toward reverse direction of gravity.
關鍵字(中) ★ 自泳動粒子
★ 擴散行為
★ 沉降平衡
關鍵字(英) ★ Nano-Swimmers
★ Diffusion
★ Sedimentation Equilibrium
論文目次 摘要.......................................................I
Abstract..................................................II
致謝.....................................................III
目錄......................................................IV
圖目錄.....................................................VI
表目錄.....................................................IX
第一章 緒論.................................................1
 1-1  簡介...............................................1
 1-2 奈米硬桿的布朗運動....................................1
 1-3 常見的自泳動粒子......................................2
 1-4 Run-and-tumble motion模型..........................4
 1-5 自泳動粒子與周遭流體作用方式............................5
 1-6 自泳動粒子的特性與應用.................................8
  1-6-1 自泳動粒子的擴散與沉降平衡.....................8
  1-6-2 自泳動粒子與物質表面間的作用...................12
第二章 模擬原理與方法........................................15
 2-1 耗散粒子動力學(Dissipative Particle Dynamics).......15
 2-2 DPD原理...........................................17
  2-2-1 DPD作用力 ..................................17
  2-2-2 噪訊與時間尺度(Noise and Time Step).........21
  2-2-3 斥力參數(Repulsion Parameters).............21
  2-2-4 弗洛里-哈金斯理論(Flory-Huggins Theory)......23
  2-2-5 長度、速度、時間尺度的無因次化.................26
  2-2-6 積分法求解.................................28
  2-2-7 週期性邊界條件..............................30
  2-2-8 Cell List表列法............................31
 2-3 模擬系統與參數......................................32
  2-3-1 系統基本參數設定.............................32
  2-3-2 自泳動粒子的設定.............................33
  2-3-3 牆粒子的設定................................35
 2-4 擴散係數(Diffusion Coefficient, D).................36
  2-4-1 平均平方位移(Mean Square Displacement, MSD)......................................................37
  2-4-2 速度自相關函數(Velocity Autocorrelation Function, VAF)............................................38
 2-5 沉降平衡(Sedimentation Equilibrium, SE)............40
第三章 無邊界系統中奈米硬桿擴散行為............................42
 3-1 硬桿的關聯時間......................................42
 3-2 硬桿的轉動擴散係數...................................44
 3-3 硬桿的擴散係數......................................48
第四章 無邊界系統中自泳動奈米硬桿擴散行為.......................51
 4-1 自泳動奈米硬桿的轉動擴散..............................51
 4-2 自泳動硬桿的傳送擴散.................................52
第五章 奈米硬桿的沉降平衡....................................60
 5-1 奈米硬桿的沉降平衡...................................60
 5-2 奈米自泳動硬桿的沉降平衡..............................62
第六章 結論................................................69
第七章 參考文獻.............................................71

參考文獻 [1] M. Doi; S. F. Edwards, The Theory of Polymer Dynamics.

[2] H. C. Berg, E. coli in Motion. Springer: New York, 2003; p 134.

[3] H. C. Berg; D. A. Brown, Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. Annual Review of Plant Physiology and Plant Molecular Biology 1974, 19, 55-78.

[4] J. Gray, The movement of sea-urchin spermatozoa. Journal of Experimental Biology 1955, 32, 775-801.

[5] E. H. Harris, Chlamydomonas as a model organism. Annual review of plant biology 2001, 52 (1), 363-406.

[6] Alexander A. Solovev; Samuel Sanchez; Oliver G. Schmidt, Collective behaviour of self-propelled catalytic micromotors. Nanoscale 2013, 5 (4), 1284-1293.

[7] Timothy R. Kline; Walter F. Paxton; Thomas E. Mallouk; Ayusman Sen, Catalytic Nanomotors: Remote-Controlled Autonomous Movement of Striped Metallic Nanorods. Angew. Chem. Int. Ed. 2005, 44, 744 –746.

[8] J. Tailleur; M. E. Cates, Statistical mechanics of interacting run-and-tumble bacteria. Physical Review Letters 2008, 100 (21).

[9] Jonathan Saragosti; Pascal Silberzan; Axel Buguin, Modeling E. coli Tumbles by Rotational Diffusion. Implications for Chemotaxis. Plos One 2012, 7 (4).

[10] M. E. Cates, Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics? , Rep. Prog. Phys. 2012, 75 (4).

[11] Aparna Baskaran; M. Cristina Marchettia, Statistical mechanics and hydrodynamics of bacterial suspensions. Proceedings of the National Academy of Sciences of the United States of America 2009, 106 (37), 15567-15572.

[12] Yashodhan Hatwalne; Sriram Ramaswamy; Madan Rao; R. Aditi Simha, Rheology of active-particle suspensions. Physical Review Letters 2004, 92 (11), 118101

[13] Salima Rafai; Levan Jibuti; Philippe Peyla, Effective Viscosity of Microswimmer Suspensions. Physical Review Letters 2010, 104 (9), 098102.

[14] Patrick T. Underhill; Juan P. Hernandez-Ortiz; Michael D. Graham, Diffusion and spatial correlations in suspensions of swimming particles. Physical Review Letters 2008, 100 (24), 248101.

[15] Jonathan R. Howse; Richard A. L. Jones; Anthony J. Ryan; Tim Gough; Reza Vafabakhsh; Ramin Golestanian, Self-motile colloidal particles: From directed propulsion to random walk. Physical Review Letters 2007, 99 (4), 048102.

[16] Jeremie Palacci; Cecile Cottin-Bizonne; Christophe Ybert; Lyderic Bocquet, Sedimentation and effective temperature of active colloidal suspensions. Physical Review Letters 2010, 105 (8), 088304.

[17] I. Theurkauff; C. Cottin-Bizonne; J. Palacci; C. Ybert; L. Bocquet, Dynamic Clustering in Active Colloidal Suspensions with Chemical Signaling. Physical Review Letters 2012, 108 (26), 268303.

[18] Mihaela Enculescu; Holger Stark, Active Colloidal Suspensions Exhibit Polar Order under Gravity. Physical Review Letters 2011, 107 (5), 058301.

[19] Min Jun Kim; Kenneth S. Breuer, Enhanced diffusion due to motile bacteria. Physics of Fluids 2004, 16 (9), L78-L81.

[20] Peter Galajda; Juan Keymer; Paul Chaikin; Robert Austin, A wall of funnels concentrates swimming bacteria. J. Bacteriol. 2007, 189 (23), 8704-8707.

[21] J. Tailleur; M. E. Cates, Sedimentation, trapping, and rectification of dilute bacteria. Epl 2009, 86 (6), 60002.

[22] M. B. Wan; C. J. Olson Reichhardt; Z. Nussinov; C. Reichhardt1, Rectification of swimming bacteria and self-driven particle systems by arrays of asymmetric barriers. Physical Review Letters 2008, 101 (1), 018102.

[23] Mew-Bing Wan; YongSeok Jho, Directed motion of elongated active polymers. Soft Matter 2013, 9 (12), 3255-3261.

[24] R. Di Leonardo; L. Angelani; D. Dell’Arciprete; G. Ruocco; V. Iebba; S. Schippa; M. P. Conte; F. Mecarini; F. De Angelis; E. Di Fabrizio, Bacterial ratchet motors. Proceedings of the National Academy of Sciences of the United States of America 2010, 107 (21), 9541-9545.

[25] Allison P. Berke; Linda Turner; Howard C. Berg; Eric Lauga, Hydrodynamic attraction of swimming microorganisms by surfaces. Physical Review Letters 2008, 101 (3), 038102.

[26] Jane Hill; Ozge Kalkanci; Jonathan L. McMurry; Hur Koser, Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Physical Review Letters 2007, 98 (6), 068101.

[27] R.W. Nash; R. Adhikari; J. Tailleur; M. E. Cates, Run-and-Tumble Particles with Hydrodynamics: Sedimentation, Trapping, and Upstream Swimming. Physical Review Letters 2010, 104 (25), 258101.

[28] J. Schwarz-Linek; C. Valeriani; A. Cacciuto y; M. E. Cates; D. Marenduzzo; A. N. Morozov; W. C. K. Poon, Phase separation and rotor self-assembly in active particle suspensions. Proceedings of the National Academy of Sciences of the United States of America 2012, 109 (11), 4052-4057.

[29] Julian Bialke; Thomas Speck; Hartmut Lowen, Crystallization in a Dense Suspension of Self-Propelled Particles. Physical Review Letters 2012, 108 (16), 168301.

[30] Idan Tuval; Luis Cisneros; Christopher Dombrowski; Charles W. Wolgemuth; John O. Kessler; Raymond E. Goldstein, Bacterial swimming and oxygen transport near contact lines. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (7), 2277-2282.

[31] P. J. Hoogerbrugge; J. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters 1992, 19 (3), 155-160.

[32] R. D. Groot; P. B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997, 107 (11), 4423-4435.

[33] P. Espanol; P. Warren, Statistical-mechanics of dissipative particle dynamics. Europhysics Letters 1995, 30 (4), 191-196.

[34] Jonathan B. Gibson; Ke Chen; Simon Chynoweth, Simulation of particle adsorption onto a polymer-coated surface using the dissipative particle dynamics method. J. Colloid Interface Sci. 1998, 206 (2), 464-474.

[35] M. P. Allen; D. J. Tildesley, Computer simulation of liquids. Oxford university press: New York, 1989; p 385.

[36] Robert D. Groot; Timothy J. Madden, Dynamic simulation of diblock copolymer microphase separation. J. Chem. Phys. 1998, 108 (20), 8713-8724.

[37] D. C. Rapaport, The art of molecular dynamics simulation. Cambridge University Press: Cambridge, 2004; p 564.

[38] D. Frenkel; B. Smit, Understanding molecular simulation: from algorithms to applications. Academic press: San Diego, 2001; p 443

[39] J. Perrin., Mouvement brownien et realite moleculaire. Ann. Chim. Phys. 1909, 18, 5-104.
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2014-6-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明