博碩士論文 101324002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:3.139.83.27
姓名 王凱平(Kai-ping Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討以活性碳進行萃取式發酵來提升Clostridium acetobutylicum 產丁醇之研究
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究是利用活性碳對Clostridium acetobutylicum進行萃取式發酵,在發酵期間添加活性碳,降低發酵液中丁醇的濃度,藉由此種方式來改善丁醇抑制效應的問題。本次實驗在菌體生長的穩定期添加不同克數的活性碳移除丁醇,使溶液中丁醇的濃度降低,提升丁醇的最大累積濃度。
當添加活性碳時,活性碳會吸附葡萄醣以及丁醇,在起始醣濃度較高時添加活性碳,醣濃度降低的情形較不明顯,丁醇抑制所占得權重相較之下影響比較顯著,所以當活性碳添加量增加時,移除的丁醇量越多,ABE發酵所產生的丁醇累積濃度可以繼續提高,反之,在起始醣濃度低時添加活性碳,菌生長穩定期的前期添加活性碳,會因為葡萄醣濃度變化比丁醇抑制的影響更加顯著,所以在起始醣濃度低時,前期添加活性碳反而會有反效果;然而,晚期添加活性碳時,殘醣濃度低,丁醇濃度高,添加活性碳會有增益的效果。
除了添加活性碳,降低丁醇濃度對於ABE發酵的影響之外,活性碳改質也是探討的重點,利用NaOH使表面增加OH基以及在高溫400OC度的條件下,分別通入5%、10%及20%的氧氣增加活性碳表面的鹼性官能基OH來改善活性碳移除丁醇的效果,減少活性碳的使用量。
摘要(英) Activated carbon was used in acetone-butanol-ethanol (ABE) fermentation by Clostridium saccharoperbutylacetonicum .Improve the growth inhibition of butanol concentration(10 g/L) in ABE fermentation by adding activated carbon at the different Clostridium growth phases. When Clostridium grow into decline phase, where butanol concentration reach the maximum point, considering the addition of activated carbon time proffer the optimal timing to remove the butanol and provide a suitable growing condition. On the one hand, modification of activated carbon surface was taken by oxygen gasification with the ratio of oxygen to hydrogen(1:5、1:9、1:17) and the introduction of surface functional groups depended upon the severity of the treatment: carbonylic and phenolic type groups were introduced in all partially gasified activated carbon surface. Gasified samples were efficient to absorb butanol in ferment procedure ,and the accumulation of butanol concentration could reach to 11.52 g/L. On the other hand, NaOH treat activated carbon Surface increasing the hydroxyl and carboxyl categories for a further increase of butanol intake with the result that activated carbon could remove butanol concentration to 6.13g/L
關鍵字(中) ★ 活性碳吸附
★ 丁醇
關鍵字(英) ★ activate carbon
★ butanol
★ Clostridium
論文目次 目錄
第一章 緒論 ............................................................................................... 1
1-1 研究動機 ...................................................................................... 1
1-2 研究目的 ...................................................................................... 2
第二章 文獻回顧....................................................................................... 3
2-1 生質能 .......................................................................................... 3
2-2 丁醇 .............................................................................................. 3
2-2-1 丁醇基本性質 .................................................................... 3
2-2-2 丁醇生產方式 .................................................................... 4
2-2-3 丁醇的應用 ........................................................................ 5
2-3 ABE發酵 ....................................................................................... 6
2-3-1 ABE發酵介紹 .................................................................... 6
2-3-2 ABE發酵製程改良法 ........................................................ 7
2-4 Clostridium 的介紹 ...................................................................... 8
2-6 活性碳 (Activated carbon,AC) .............................................. 14
2-6-1 活性碳製造 ............................................................................. 14
2-6-2 活性碳分類 ...................................................................... 15
2-6-3 活性碳之物化特性 .......................................................... 17
2-6-4 活性碳之應用 .................................................................. 19
2-7 吸附基本原理 ............................................................................ 20
iv
2-7-1 吸附現象 .......................................................................... 20
2-7-2 吸附種類 .......................................................................... 21
2-8 活性碳改質 ................................................................................ 23
2-8-1表面酸性處理 ................................................................... 24
2-8-2表面鹼性處理 ................................................................... 25
2-8-3 活性碳物理特性 .............................................................. 25
第三章 材料與方法 ................................................................................ 26
3-1 實驗材料 .................................................................................... 26
3-1-1 微生物 .............................................................................. 26
3-1-2 培養基組成 ...................................................................... 27
3-1-3 實驗藥品 .......................................................................... 28
3-2 實驗設計與方法 ........................................................................ 30
3-2-1 菌種保存 .......................................................................... 30
3-2-2 接種菌體培養 .................................................................. 31
3-2-3 攪拌式發酵槽 .................................................................. 32
3-3 分析方法 .................................................................................... 33
3-3-1菌體量測定 ....................................................................... 33
3-3-2 葡萄糖殘量測定 .............................................................. 34
3-3-3 ABE分析 .......................................................................... 35
第四章 結果與討論 ................................................................................ 37
v
4-1吸附前後濃度變化情形 ............................................................. 37
4-1-1 丁醇、乙醇、丙酮各別吸附情形 .................................. 37
4-1-2混合溶液吸附情形 ........................................................... 40
4-2高濃度醣添加發酵 ..................................................................... 44
4-3低濃度醣添加發酵 ..................................................................... 49
4-5活性碳改質 ................................................................................. 55
4-5-1液相改質活性碳表面 ....................................................... 55
4-5-2活性碳表面官能基 ........................................................... 56
4-5-3改質後對丁醇的吸附 ....................................................... 58
4-6氣相改質活性碳表面 ................................................................. 59
4-7定量活性碳表面官能基 ............................................................. 61
4-8萃取式發酵添加改質活性碳 ..................................................... 63
第五章 結論 ............................................................................................. 66
第六章 參考文獻..................................................................................... 67
參考文獻 參考文獻
1. 施顏祥, 2012 年能源產業技術白皮書. 2012: 經濟部能源局.
2. Lee, S.Y., J.H. Park, S.H. Jang, L.K. Nielsen, J. Kim, and K.S. Jung, Fermentative butanol production by Clostridia. Biotechnol Bioeng, 2008. 101(2): p. 209-228.
3. 周仕凱 and 許梅娟, 新能源-生物產丁醇. 科學發展, 2009. 433: p. 26-31.
4. Qureshi, N., X.-L. Li, S. Hughes, B.C. Saha, and M.A. Cotta, Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnol. Prog., 2006. 22: p. 673-680.
5. Qureshi, N., B.C. Saha, and M.A. Cotta, Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng, 2007. 30(6): p. 419-27.
6. Tashiro, Y., K. Takeda, G. Kobayashi, K. Sonomoto, A. Ishizaki, and S. Yoshino, High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. Journal of Bioscience and Bioengineering, 2004. 98(4): p. 263-268.
7. Ni, Y. and Z. Sun, Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol, 2009. 83(3): p. 415-23.
8. Jones, D.T. and D.R. Woods, Acetone-butanol fermentation revisited.
Microbiological Reviews, 1986. 50(4): p. 484-524.
9. Durre, P., Fermentative butanol production: bulk chemical and biofuel. Ann N Y Acad Sci, 2008. 1125: p. 353-62.
10. Qureshi, N. and H.P. Blaschek, Recovery of butanol from
fermentation broth by gas stripping. Renewable Energy, 2001. 22: p. 557-564.
11. Mariano, A.P., N. Qureshi, R. Maciel Filho, and T.C. Ezeji, Assessment of in situ
butanol recovery by vacuum during acetone butanol ethanol (ABE)
fermentation. Journal of Chemical Technology & Biotechnology, 2012. 87(3): p. 334-340.
12. Friedl, A., N. Qureshi, and I.S. Maddox, Continuous acetone-butanol-ethanol (ABE) fermentation using immobilized cells of Clostridium acetobutylicum in a packed bed reactor and integration with product removal by pervaporation. Biotechnol. Bioeng., 1991. 38(5): p. 518-527.
13. 黃浩宸, 國立中央大學化學工程與材料工程學系碩士論文, 探討可控式包埋Saccharomyces cerevisiae 對於乙醇醱酵之影響. 2011.
14. 蓋聖文, 國立中央大學化學工程與材料工程學, 探討以疏水性離子液體進行萃取式醱酵對Clostridium acetobutylicum產丁醇之影響.系碩士論文, 2012.
15. Ha, S.H., N.L. Mai, and Y.-M. Koo, Butanol recovery from aqueous solution into ionic liquids by liquid–liquid extraction. Process Biochemistry, 2010. 45(12): p. 1899-1903.
16. Yen, H.W. and Y.C. Wang, The enhancement of butanol production by in situ butanol removal using biodiesel extraction in the fermentation of ABE (acetone-butanol-ethanol). Bioresour Technol, 2012.
17. Evans, P.J. and H.Y. Wang, Enhancement of butanol formation by Clostridium acetobutylicum in the presence of decanol-oleyl alcohol mixed extractants. Applied and enviromental microbiology, 1988. 54(7): p. 1662-1667.
18. Desai, R.P. and e.T. Papoutsakis, Antisense RNA strategies for metabolic
engineering of Clostridium acetobutylicum. Appl. Environ Microbiol, 1999. 65(3): p. 936-945.
19. Nolling, J., G. Breton, M.V. Omelchenko, K.S. Makarova, Q. Zeng, R. Gibson, H.M. Lee, J. Dubois, D. Qiu, J. Hitti, Y.I. Wolf, R.L. Tatusov, F. Sabathe, L. Doucette-Stamm, P. Soucaille, M.J. Daly, G.N. Bennett, E.V. Koonin, and D.R. Smith, Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol, 2001. 183(16): p. 4823-38.
20. 李國鏞 and 游若荻, 微生物學. 華香園出版社,第四版, 1992: p. 126-145.
21. 許駿發, 經濟部工業局, 工業技術人才培訓計畫講義-高溫丁醇發酵之理論與應用. 1998.
22. Lutke-Eversloh, T. and H. Bahl, Metabolic engineering of Clostridium
acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol, 2011. 22(5): p. 634-47.
23. 陳勁中, 淺談生質丁醇及未來研發趨勢. 石油通訊, 2011. 716: p. 20-23.
24. Brook, T.D. and M.T. Madigan, Biology of microorganisms 6th. Prentice Hall, 1991.
25. Lewis, I.C., Chemistry of carbonization Carbon, 1982. 20(6): p. 519-529.
26. Okasfe, O. and H. Bosch, The production and characterization of activated carbon. Chem. Age of India, 1980. 31(3).
27. F. Caturla, M. Molina-Sabio, and F. Rodriguez-Reinoso, Preparation of activated carbon by chemical activation with ZnCl2. Carbon, 1991.
29(7): p. 999-1007.
30. 廖志國, 操作條件對微波再生活性碳效率之影響及產物分析研究. 中山大學環境工程研究所,碩士論文, 1999.
31. 楊沛澤 and 黃宜漢, 活性碳吸附於中鋼廢水處理運用之實例. 技術與訓練, 1998. 23(6): p. 165-176.
32. Biniak, S., M. Paku.a, G.S. Szyman’ski, and A.S.w. tkowski, Effect of Activated
Carbon Surface Oxygen- and/or Nitrogen-Containing Groups on Adsorption of
Copper(II) Ions from Aqueous Solution. Langmuir 1999. 15: p. 6117-6112.
33. Hall, C.R. and R.J. Holmes, The preparation and properties of some
activated carbons modified by treatment with phosgene or
chlorine. Carbon, 1992. 30(2): p. 173-176.
34. Boehm, H.P., Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 1994. 32(5): p. 759-769.
Arico, A.S., Antonucci, V., Minutoli, M., Giordano, N., 1989.
The influence of functional groups on the surface acid–base characteristics of carbon blacks. Carbon 27, 337–347.
35.Bailey, P.S., 1982. Ozonation in Organic Chemistry, vol. II.
Nolefinic Compounds. Academic Press, New York.
36.Bansal, R.C., Donnet, J.B., Stoeckli, F., 1990. Active Carbon.
Marcel Dekker, New York.
37.Barton, S.S., Gillespie, D., Harrison, B.H., 1973. Surface
studies of carbon: acidic oxides on Speron 6. Carbon 11,
649–654.
38.Boehm, H.P., 1966. Chemical identification of surface groups.
39.In: Eley, D.D., Pines, H., Weisz, P.B. (Eds.), Advances in
Catalysis, vol. 16. Academic Press, New York, p. 179.
40.Chiang, H.L., Huang, C.P., Chiang, P.C., Chang, E.E., 1999.
Effect of metal additives on the physico-chemical characteristics
of activated carbon exemplified by benzene and acetic acid adsorption. Carbon 37, 1919–1928.
41. Palomar, J., J. Lemus, M.A. Gilarranz, and J.J. Rodriguez, Adsorption of ionic liquids from aqueous effluents by activated carbon. Carbon, 2009. 47(7): p. 1846-1856.
42. C.Y. Yin et al.Separation and Purification Technology 52 (2007) 403–415
43. S.J. Park, Y.S. Jang. Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(IV) J. Colloid Interface Sci., 249 (2002), pp. 458–463
44. A.A. Attia, W.E. Rashwan, S.A. Khedr Capacity of activated carbon in the removal of acid dyes subsequent to its thermal treatment Dyes Pigment, 69 (2006), pp. 128–136
45. C.P. Huang, H.-L. Chiang, P.C. Chiang, Chemosphere 47 (2002) 257–265
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2014-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明