博碩士論文 101324005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.227.252.191
姓名 張家豪(Chia-hao Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 共濺鍍鋁鍺薄膜之接合特性研究
(Bonding Characteristics of Co-sputtering Aluminum-Germanium Thin Film)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在微電機封裝中利用鋁鍺薄膜共晶接合可達到好的接合強度和良好氣密性特性,共晶鋁鍺薄膜大多以雙層膜結構方式接合,但此雙層膜結構需藉由時間擴散達到均質共晶組成。本研究利用濺鍍機以共濺鍍的方式製備鋁鍺薄膜,其組成約為72.8 at.%的鋁及約為27.2 at.%的鍺,希望能藉由共濺鍍直接形成均質鋁鍺薄膜以達到良好的接合行為,本研究分析不同接合溫度、時間和壓力等參數影響共濺鍍鋁鍺薄膜的接合特性。
由結果可發現在低於熔點的接合溫度之接合特性與富鋁相的生成有極大關聯,尤其接合溫度劇烈影響富鋁相形貌,當接合溫度在400 oC、接合壓力0.3 MPa和接合時間30 min時可有最佳的接合剪切強度,原因可能為微結構出現由富鋁相形成之網狀結構而增強機械性質,而當接合溫度提升至500 oC後,卻因生成大面積的富鍺相而降低接合剪切強度。
摘要(英) In MEMS packaging, aluminum-germanium eutectic bonding can achieve excellent bonding strength and good hermetic performance. Under many circumstances, using bi-layer aluminum/germanium thin film is the most common bonding approach, however it requires time and temperature to diffuse and to reach the homogeneous eutectic composition. This study used sputter technique to co-sputter aluminum-germanium thin film with the composition 72.8 at.% Al and 27.2 at.% Ge. This thesis investigated and analyzed the effect on the compositional variation and bonding strength under different parameters, such as bonding temperature, bonding pressure and bonding time.
The results showed that the formation of the Al-rich region and its occupying areas could greatly influence the bonding characteristics when the bonding condition was below eutectic temperature. Furthermore, under a bonding temperature of 400 oC, bonding pressure of 0.3 MPa and bonding time of 30 min the film exhibited the optimal shear strength due to the formation of network structure of aluminum rich regions that could enhance the mechanical properties. The bonding strength would be weakened by the formation of large area of Ge rich phase when raising the bonding temperature to 500 oC.
關鍵字(中) ★ 鋁鍺薄膜
★ 共濺鍍
★ 共晶接合
關鍵字(英) ★ Al-Ge Thin Film
★ Co-sputtered
★ Eutectic Bonding
論文目次 摘要…………………………………………………………………………………………..Ⅰ
Abstract………………………………………………………………………………………Ⅱ
目錄…………………………………………………………………………………………..Ⅲ
圖目錄………………………………………………………………………………………..Ⅴ
表目錄……………………………………………………………………………………….Ⅶ

第一章 緒論 1
1.1 MEMS簡介 1
1.2 MEMS晶圓級封裝接合簡介 2
1.2.1陽極接合(Anodic bonding) 2
1.2.2融合接合(Fusion bonding) 4
1.1.3共晶接合(Eutectic bonding) 5
1.1.4金屬熱壓接合(Metal thermal compression bonding) 6
1.1.5黏著接合(Adhesive bonding) 7
1.1.6玻璃介質接合(Glass-frit bonding) 8
第二章 文獻回顧 9
2.1 Al-Ge共晶系統簡介 9
2.2密封性封裝(Hermetic seal) 10
2.3共晶Al-Ge薄膜接合簡介 11
2.3.1共晶Al-Ge薄膜接合氣密性測試 11
2.3.2鋁鍺接合微結構……………………………………………………………..14
2.3.2熱穩定性之共晶Al-Ge薄膜接合 17
2.3.3 共晶Al-Ge薄膜接合之製程改良 18
2.3.4共晶Al-Ge薄膜不同接合條件之影響 21
2.4研究動機 24
第三章 實驗方法 25
3.1磁控濺鍍系統簡介 25
3.2基材準備與鋁鍺薄膜共濺鍍製程 26
3.3共濺鍍Al-Ge薄膜接合製程 27
3.4共濺鍍Al-Ge薄膜接合剪切力測試 29
3.5共濺鍍Al-Ge薄膜接合實驗微結構分析 31
3.5.1 表面形貌與微結構………………………………………………………….31
3.5.1.1掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 31
3.5.1.2原子力學顯微鏡(Atomic Force Microscopy, AFM) 32
3.5.2 結晶行為…………………………………………………………………….33
3.5.2.1 X射線繞射儀(X-ray Diffraction, XRD) 33
3.5.3 組成與元素分布…………………………………………………………….34
3.5.3.1能量散佈分析儀(Energy Dispersive Spectrometer, EDS) 34
3.5.3.2 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 34
3.5.3.3電子微探儀(Electron Probe Micro-Analyzer, EPMA) 35
第四章 結果與討論 37
4.1初始共濺鍍鋁鍺薄膜之觀察 37
4.2共濺鍍鋁鍺薄膜之剪切測試結果 40
4.3共濺鍍鋁鍺薄膜之斷裂面觀察 43
4.4共濺鍍鋁鍺薄膜之剪切強度分析 54
第五章 結論 59
參考文獻 60
參考文獻 [1] R. Bogue, “MEMS Sensors: Past, Present and Future”, Sensor Review, 27, 7-13 (2007)
[2] C. M. Ho, Micro-Electro-Mechanical- Systems (MEMS) and Fluid Flows, Annual Review of Fluid Mechanics, 30, 579-612 (1998)
[3] Sandia National Laboratories : “MEMS Thermal Actuator”,
http://www.memx.com/image_gallery.htm
[4] D. Brei, “Deflection Performance of a Bi-Directional Distributed Polymeric Piezoelectric Micromotor”, J. Microelectromech. S., 6, 62-69 (1997)
[5] L. Peters, “Wafer-Level Packaging Slices MEMS′ Costs”, Micromanufacturing, 4, (2011)
[6] S. Farrens, “Wafer Level Packaging: Balancing Device Requirements and Materials Properties”, Pan Pacific Microelectronics Symposium, 22-24 (2008)
[7] R. Joyce, “Low cost anodic bonding for MEMS packaging applications”, Microsystem Technologies, 20, 1153-1158 (2014)
[8] T. L. Svetlana, “Bond-Quality Characterization of Silicon-Glass Anodic Bonding”, Sensors and Actuators A, 60, 223-227 (1997)
[9] V. G. Kutchoukov, “Fabrication of Nanofluidic Devices Using Glass-to-Glass Anodic Bonding”, Sensors and Actuators, 114, 521-527 (2004)
[10] C. R. Yang, “Research on Soeed and Quality of Anodic Bonding by Appling Arc Discharge”, Chinese Society of Mechanical Engineers (2006)
[11] J. B. Lasky, “Wafer Bonding for Silicon-On-Insulator Techologies”, Applied Physics Letters, 48, 78-80 (1986)
[12] H. Ohashi, “Improved Dielectrically Isolated Device Integration by Silicon-Wafer Direct Bonding(SDB) Technique”, In Proceeding of: Electron Devices Meeting, 32, 210-213 (1986)
[13] C. Rauer, “Hydrophobic direct bonding of silicon reconstructed surfaces”, Microsyst. Technol., 19, 675-679 (2013)
[14] Y. Backlund, A Suggested Mechanism for Silicon Direct Bonding from Studying Hydrophobic Surfaces”, Journal of Micromechanics and Microengineering, 2, 158-160 (1992)
[15] K. W. Yang, “The Study of Al-Ge Thin Films on Package”, National Central University Institutional Repository, (2009)
[16] M. Abouie, “Eutectic and Solid-State Wafer Bonding of Silicon With Gold”, Materials Science and Engineering B, 177, 1748-1758 (2012)
[17] R. F. Wolffenbuttel, “Low-Temperature Intermediate Au-Si Wafer Bonding; eutectic or silicide bond”, Sensors and Actuators A, 62, 680-686 (1997)
[18] Q. Liu, “Localized Si–Au Eutectic Bonding Around Sunken Pad for Fabrication of a Capacitive Absolute Pressure Sensor”, Sensors and Actuators A, 201, 241-245 (2013)
[19] S. Farrens,”Metal Based Wafer Level Packaging”, SUSS Micro. Tec.
[20] J. Fan, “Low Temperature Wafer-Level Metal Thermo-Compression Bonding Technology for 3D Integration”, Metallurgy-Advances in Materials and Processes, 71-94 (2012)
[21] V. Dragoi, “Metal Wafer Bonding for MEMS Devices”, Romanian Journal of Information Science and Technology, 13, 65-72 (2010)
[22] B. Swinnen, “3D Integration by Cu-Cu Thermo-Compression Bonding of Extremely Thinned Bulk-Si Die Containing 10 μm Pitch Through-Si Vias”, Electron Devices Meeting, IEDM ’06. International, 1-4 (2006)
[23] Y. S. Tang, “Wafer-Level Cu–Cu Bonding Technology”, Microelectronics Reliability, 52, 312-320 (2010)
[24] K. N. Chen. “Morphology and Bond Strength of Copper Wafer Bonding”, Electrochemical and Solid-State Letters, 7, G14-G16 (2004)
[25] V. Dragoi, “Adhesive Wafer Bonding for MEMS Applications”, Proceedings of SPIE, 5116, 160-167 (2003)
[26] M. Wiemer, “Wafer Bonding with BCB and SU-8 for MEMS Packaging”, Electronics Systemintegration Technology Conference, 2, 1401-1405 (2006)
[27] J. Q. Lu, “3D Integration Based upon Dielectric Adhesive Bonding”, Integrated Circuits and Systems, Wafer Level 3-D ICs Process Technology, 219-256 (2008)
[28] S. P. Gumfekar, “Polyaniline-Tailored Electromechanical Responses of the Silver/Epoxy Conductive Adhesive Composites”, Journal of Polymer Science Part B: Polymer Physics, 51, 1448-1455 (2013)
[29] R. Xu, ”Microstructures of the eutectic and hypereutectic Al–Ge alloys solidified under different pressures”, Material Letters, 60, 783-785 (2006)
[30] A. J. McAlister, “The Al−Ge (Aluminum-Germanium) System”, Bulletin of Alloy Phase Diagrams, 5, 341-347 (1984)
[31] B. Vu, “Patterned Eutectic Bonding With Al/Ge Thin Films for Microelectromechanical Systems” Journal of Vacuum Science & Technology B, 14, 2588-2594 (1996)
[32] P. M. Zavracky, “Patterned Eutectic Bonding with Al/Ge Thin Films for MEMS”, The International Society for Optical Engineering, 2639, 46-52 (1995)
[33] F. Crnogorac, “Low-temperature Al-Ge Bonding for 3D Integration”, Journal of Vacuum Science and Technology B, 30, 06FK01 - 06FK01-7 (2012)
[34] M. Lane, “Plasticity Contributions to Interface Adhesion in Thin-film Interconnect Structure”, Journal of Materials Research, 15, 2758-2769 (2000)
[35] W. T. Park, “Microstructure and Mechanical Properties of Aluminum–Germanium Eutectic Bonding with Polysilicon Metallization for Microelectromechanical Systems (MEMS) Packaging”, Scripta Materialia, 64, 733-736 (2011)
[36] V. Chidanbaram, “Development of CMOS Compatible Bonding Material and Process for Wafer Level MEMS Packaging Application under Harsh Environment”, International Conference on Solid-State and Integrated Circuit, 32, 136-141 (2012)
[37] I. Perez-Quintana, “An Aluminum-Germanium Eutectic Structure for Silicon Wafer Bonding Technology”, Journal of Physics C: Solid State Physics, 2, 3706-3709 (2005)
[38] G. Raghavan, “Study of Inter-Diffusion and Defect Evolution in Thin Film Al/Ge Bilayers Using SIMS and Positron Beam”, Applied Surface Science, 178, 75-82 (2001)
[39] J. L. Murray, “The Al-Si (Aluminum-Silicon) System”, Bulletin of Alloy Phase Diagrams, 5, 74-84 (1984)
[40] Y. Funamizu, “Interdiffusion in the Al-Cu System”, Materials Transactions: The Japan Institute of Metals and Materials, 12,147-152 (1971)
[41] V. Chidanbaram, “Development of Metallic Hermetic Sealing for MEMS Packaging for Harsh Environment Applications”, Journal of Electronic Materials, 41, 2256-2266 (2012)
[42] C. N. Yeh, “Elucidating the Metal-Induced Crystallization and Diffusion Behavior of Al/a-Ge Thin Films”, Journal of Electronic Materials, 41, 159-165 (2012)
[43] X. H. Huang, “The Effects of Composition and Design of Experiment on the Quality of Al-Ge Eutectic Bonding for Wafer Level Packaging”, ECS Transactions, 50, 151-158 (2012)
[44] P.I. Ross, “Taguchi Techniques for Quality Engineering”, New York: McGraw-Hill, 227 (1992)
[45] F. Crnogorac, “Aluminum-Germanium Eutectic Bonding for 3D Integration”, International 3D System Integration Conference, IEEE (2010)
[46] J. W. Jang, “Direct Correlation between Microstructure and Mechanical Tensile Properties in Pb-free Solders and Eutectic SnPb Solder for Flip Chip Technology”, Applied Physics Letters, 79, 482-483 (2011)
[47] United States Department of Defense, “Die Shear Strength”, Test Method Standard-Microcircuits, MIL-STD-883F Method 2019.7 (2003)
[48] J. Goldstein, “Scanning Electron Microscopy and X-ray Microanalysis”, Plenum Press, New York (1992)
[49] F. Catalina, “Electrical Resistivity and structural changes in amorphous Ge1-xAlx Thin Films under thermal annealing” , Thin Solid Films, 167, 57-65 (1988)
[50] U. Köster, “Crystallization and decomposition of aluminum and germanium films”, Acta Materialia, 20, 1361-1370 (1972)
[51] M. J. Kaufman, “Metastable Phase Production and Transformation in Al-Ge Alloy Films by Rapid Crystallization and Annealing Treatments”, Acta Materialia, 5, 1181-1192 (1987)
[52] T. Laoui, “Nonequilibrium Behavior in the AI-Ge Alloy System: Insights into the Metastable Phase Diagram”, Metallurgical and Materials Transactions A, 22, 2141-2152 (1991)
[53] Y. H. Kim, “Crystallization and High Mechanical Strength of Al-based Amorphous Alloys”, Materials Transactions, 35, 293-302 (1994)
指導教授 吳子嘉(Albert T. Wu) 審核日期 2014-8-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明