博碩士論文 101324006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.232.133.141
姓名 宋依庭(Yi-Ting Song)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 銅觸媒催化之直接碳氫鍵芳香環化反應:以高效率低成本之新合成策略製備含噻吩并[3,4-c]吡咯-4, 6 -二酮(TPD)之功能性有機材料
(Copper-Catalyzed Direct C-H Arylation of Thieno[3,4-c] pyrrole-4,6-dione (TPD) : Toward Efficient and Low-Cost Synthesis of π-Functional Small Molecules)
相關論文
★ 人類胚胎幹細胞在無滋養層及無異種條件的培養下於帶有生長因子的表面進行培養★ 鈣鈦礦膜缺陷控制及製備高效率鈣鈦礦太陽能電池
★ 噻吩并[3,4-c]吡咯-4, 6-二酮(TPD)之鈀催化直接碳氫鍵芳香環化反應之研究: 以高步驟經濟效益合成策略製備含TPD之功能性π-共軛小分子★ 芳香雜環碘化物之水相自身耦合反應:有機光電材料重要前驅物之綠色化學合成法之研究
★ 鈷觸媒催化之芳香雜環溴化物還原性烷基化反應: 以一鍋化反應製備烷基噻吩、呋喃、硒吩與吡咯之有機光電材料重要前驅物★ 利用碳氫鍵芳香環化反應高效率合成小分子有機半導體材料之末端基與其在染料敏化太陽能電池之應用
★ 銅催化之碳氫鍵芳香環化反應於染料敏化太陽能電池之綠色合成與應用★ 利用交叉脫氫耦合反應快速製備各式D-π-A有機染料分子:C-H/C-H合成法研究與其在染料敏化太陽能電池之應用
★ 鈀催化之碳氫鍵活化反應: 發展省步驟且具位向選擇性新合成途徑 快速製備有機光電材料重要之π-A-π結構★ 發展功能性π共軛小分子之綠色合成方法學及其於太陽能電池之應用
★ 利用碳氫鍵芳香環化反應一步合成含EDOT電洞傳輸材料及其於鈣鈦礦太陽能電池之應用★ 碳氫鍵活化反應於鈣鈦礦太陽能電池之應用:高效能電洞傳輸材料合成捷徑之研究
★ 結合C-H/C-Br與C-H/C-H反應快速合成快速合成有機光敏化劑並探討內部拉電子基對於有機光敏化劑並探討內部拉電子基對於 有機光敏化劑並探討內部拉電子基對於 有機光敏化劑並探討內部拉電子基對於 有機光敏化劑並探討內部拉電子基對於 有機光敏化劑並探討內部拉電子基對於染料敏化太陽能電池效率之染料敏化太陽能電池效率之染料敏化太陽能電池效率之染料敏化太陽能電池效率之影響★ 一鍋化連續式碳氫鍵芳香環化反應於染料敏化太陽能電池與鈣鈦礦太陽能電池之應用
★ 利用反應條件最佳化之碳-氫/碳-溴合成策略快速製備以并三?吩為核心結構之電洞傳輸材料★ 含?唑與吩??之電洞傳輸材料於鈣鈦礦太陽能電池之應用:發展碳氫鍵芳香環化之省步驟合成法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 過渡金屬催化之直接碳-氫鍵芳香環化反應為近年來有機合成之研究重心,本論文利用簡單的銅觸媒進行直接碳-氫鍵芳香環化反應,合成出一系列以thieno[3,4-c]pyrrole-4,6-dione (TPD) 為核心之π共軛功能性小分子。相較於其他常被使用的過渡金屬,例:鈀 (Pd)、釕 (Ru)、銠 (Rh)等,銅 (Cu) 觸媒不但為一價格較便宜之過渡金屬,且相對毒性較低,更符合現今所提倡綠色環保之概念。

實驗中,我們測試不同的銅觸媒、配位基、鹼和溶劑對於TPD分子進行銅觸媒催化直接碳-氫鍵芳香環化反應之影響。利用我們所獲得之最佳化條件,TPD與帶有各式不同官能基之芳香環基碘化物進行銅觸媒催化直接碳-氫鍵芳香環化反應時,均能順利地合成出目標產物,顯示此催化系統之官能基容忍度極佳。

本研究利用銅觸媒催化直接碳-氫鍵芳香環化反應,合成了一系列以TPD為主體結構之π共軛有機材料分子,不但降低了實驗成本且減少了反應所需時間,為一符合原子與步驟經濟效應之新合成途徑,相信能夠逐漸取代傳統交叉耦合反應並幫助我們更有效率地製備出所需之π共軛有機材料分子。
摘要(英) A series of thieno[3,4-c]pyrrole-4,6-dione (TPD)-based functional small molecules were efficiently synthesized through direct C-H arylations using inexpensive copper salts. In this study, we examined all required reaction parameters including various copper complexes, ligands, bases, and (co)solvents. Under the optimum reaction conditions, the C-H arylation proceeded smoothly and a variety of functional groups such as ester, nitrile, fluoride, chloride, triazene, and amine were tolerated. This method provides a step-economical and low-cost synthetic alternative to presently used coupling reactions for the preparation of TPD-containing π-functional materials.
關鍵字(中) ★ 銅觸媒
★ 直接碳氫鍵芳香環化反應
★ 噻吩并[3,4-c]吡咯-4, 6 -二酮
★ π-功能性有機材料
關鍵字(英) ★ Copper
★ Direct C-H Arylation
★ TPD
★ π-Functional Small Molecules
論文目次 中文摘要 ……………………………………………………………… i
英文摘要 ……………………………………………………………… ii
誌謝 ……………………………………………………………… iii
目錄 ……………………………………………………………… iv
圖目錄 ……………………………………………………………… vi
表目錄 ……………………………………………………………… vii
化學式與化學名稱對照表 ……………………………………………… viii
一、緒論 ……………………………………………………………… 1
1-1 鈀催化之交叉耦合反應 …………………………………… 1
1-2 π 共軛有機材料分子 …………………………………… 6
1-3 銅催化之交叉耦合反應 …………………………………… 11
二、結果與討論 ……………………………………………………… 19
2-1 尋找反應最佳化條件 …………………………………… 19
2-1-1 決定實驗方向 …………………………………… 19
2-1-2 探討不同銅觸媒催化劑對反應之影響 ……………… 21
2-1-3 探討不同配位基對反應之影響 …………………… 23
2-1-4 探討不同鹼對反應之影響 ……………………… 25
2-1-5 探討不同溶劑對反應之影響 ……………………… 27v
2-1-6 最佳化條件 ………………………………………… 28
2-2 探討 TPD 和不同芳香環基碘化物之直接碳-氫鍵芳香環化反應
…………………………………………………………………… 29
2-3 探討不同 TPD 衍生物和不同芳香環基碘化物之直接碳-氫鍵芳
香環化反應 …………………………………………………… 33
2-4 探討最佳化條件之應用性 - 非對稱分子合成 ……………… 40
2-5 推測反應之反應機制 ………………………………………… 44
三、結論 ……………………………………………………………… 46
四、實驗 ……………………………………………………………… 47
4-1 實驗儀器及部分細節 ………………………………………… 47
4-2 實驗程序 …………………………………………………… 49
五、參考文獻 ………………………………………………………… 85
六、附錄 ………………………………………………………… 98
核磁共振光譜圖 ………………………………………………… 98
參考文獻 參考文獻
[1] J. McMurry, Organic Chemistry, 8th edition, Brooks/Cole Cengage Learning, 2012.
[2] C. W. Tang, S. A. Vandyke, “Organic electroluminescent diodes”, Appl. Phys. Lett., Vol. 51, Issue 12, pp. 913-915, December 1987.
[3] B. A. Ridley, B. Nivi, J. M. Jacobson, “All-Inorganic Field Effect Transistors Fabricated by Printing”, Science, Vol. 286, Issue 5440, pp. 746-748, October 1999.
[4] R. W. Miles, G. Zoppi, I. Forbes, “Inorganic photovoltaic cells”, Mater. Today, Vol. 10, Issue 11, pp. 20-27, November 2007.
[5] (a) R. F. Heck, “Arylation, Methylation, and Carboxyalkylation of Olefins by Group VI11 Metal Derivatives”, J. Am. Chem. Soc., Vol. 90, Issue 20, pp. 5518-5526, September 1968. (b) R. F. Heck, “The Arylation of Allylic Alcohols with Organopalladium Compounds. A New Synthesis of 3-Aryl Aldehydes and Ketones”, J. Am. Chem. Soc., Vol. 90, Issue 20, pp. 5526-5531, September 1968. (c) R. F. Heck, “Allylation of aromatic compounds with organopalladium salts”, J. Am. Chem. Soc., Vol. 90, Issue 20, pp. 5531-5534, September 1968. (d) R. F. Heck, “Aromatic Haloethylation with Palladium and Copper Halides”, J. Am. Chem. Soc., Vol. 90, Issue 20, pp. 5538-5542, September 1968. (e) R. F. Heck, “The Addition of Alkyl- and Arylpalladium Chlorides to Conjugated Dienes”, J. Am. Chem. Soc., Vol. 90, Issue 20, pp. 5542-5546, September 1968.
[6] K. Sonogashira, Y. Tohad, N. Hagihara, “Formation de complexes par transfert de charge entre des tetrathiofulvalenes substitues et le bis (benzodithiolate-1,2) nickel ”, Tetrahedrom Letters, Vol. 16, Issue 50, pp. 4467-4470, 1975
[7] (a) D. Milstein, J. K. Stille, “A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium”, J. Am. Chem. Soc., Vol. 100, Issue 11, pp. 3636–3638, May 1978. (b) D. Milstein, J. K. Stille, “Palladium-catalyzed coupling of tetraorganotin compounds with aryl and benzyl halides. Synthetic utility and mechanism”, J. Am. Chem. Soc., Vol. 101, Issue 17, pp. 4992–4998, 1979.
[8] (a) S. Baba, E.-I. Negishi, “A novel stereospecific alkenyl-alkenyl cross -coupling by a palladium- or nickel-catalyzed reaction of alkenylalanes with alkenyl halides”, J. Am. Chem. Soc., Vol. 98, Issue 21, pp. 6729-6731, October 1976. (b) E.-I. Negishi, A. O. King, N. Okukado, “Selective carbon-carbon bond formation via transition metal catalysis. 3. A highly selective synthesis of unsymmetrical biaryls and diarylmethanes by the nickel- or palladium-catalyzed reaction of aryl- and benzylzinc derivatives with aryl halides”, J. Org. Chem., Vol. 42, Issue 10, pp. 1821-1823, 1977.
[9] (a) N. Miyaura, K. Yamada, A. Suzuki, “A new stereospecific cross- coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides”, Tetrahedron Lett., Vol. 20, Issue 36, pp. 3437-3440, 1979. (b) N. Miyaura, T. Yanagi, A. Suzuki, “The Palladium- Catalyzed Cross-Coupling Reaction of Phenylboronic Acid with Haloarenes in the Presence of Bases”, Synth Commun., Vol. 11, Issue 7, pp. 513-519, 1981. (c) N. Miyaura, K. Yamada, “Novel and Convenient Method for the Stereo- and Regiospecific Synthesis of Conjugated Alkadienes and Alkenynes via the Palladium-Catalyzed Cross-Coupling Reaction of 1 -Alkenylboranes with Bromoalkenes and Bromoalkynes”, J. Am. Chem. Soc., Vol. 107, Issue 4, pp. 972-980, February 1985. (d) N. Miyaura, T. Ishiyama, H. Sasaki, M. Ishikawa, M. Sato, A. Suzuki, “Palladium-catalyzed inter- and intramolecular cross-coupling reactions of B-alkyl-9-borabicyclo[3.3.1] nonane derivatives with 1-halo-1-alkenes or haloarenes. Syntheses of functionalized alkenes, arenes, and cycloalkenes via a hydroboration- coupling sequence”, J. Am. Chem. Soc., Vol. 111, Issue 1, pp. 314-321, January 1989.
[10] (a) D. Alberico, M. E. Scott, M. Lautens, “Aryl−Aryl Bond Formation by Transition-Metal-Catalyzed Direct Arylation”, Chem. Rev., Vol. 107, Issue 1, pp. 174-238, January 2007. (b) S. I. Gorelsky, D. Lapointe, K. Fagnou, “Analysis of the Concerted Metalation-Deprotonation Mechanism in Palladium-Catalyzed Direct Arylation Across a Broad Range of Aromatic Substrates”, Vol. 130, Issue 33, pp. 10848-19849, August 2008. (c) L. Ackermann, R. Vicente, A. R. Kapdi, “Transition-Metal-Catalyzed Direct Arylation of (Hetero)Arenes by C-H Bond Cleavage”, Angew. Chem. Int. Ed., Vol. 48, Issue 52, pp. 9792-9826, December 2009. (d) J. Yamaguchi, K. Muto, K. Itami, “Recent Progress in Nickel-Catalyzed Biaryl Coupling”, Eur. J. Org. Chem., Vol. 2013, Issue 1, pp. 19-30, January 2013. (e) T. Brückl, R. D. Baxter, Y. Ishihara, P. S. Baran, “Innate and Guided C-H Functionalization Logic”, Acc. Chem. Res., Vol. 45, Issue 6, pp. 826-839, June 2012. (f) K. M. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, “Weak Coordination as a Powerful Means for Developing Broadly Useful C-H Functionalization Reactions”, Acc. Chem. Res., Vol. 45, Issue 6, pp. 788-802, June 2012. (g) C. Liu, H. Zhang, W. Shi, A. Lei, “Bond Formations between Two Nucleophiles: Transition Metal Catalyzed Oxidative Cross-Coupling Reactions”, Chem. Rev., Vol. 111, Issue 3, pp. 1780-1824, March 2011. (h) T. W. Lyons, M. S. Sanford, “Palladium-Catalyzed Ligand-Directed C-H Functionalization Reactions”, Chem. Rev., Vol. 110, Issue 2, pp. 1147-1169, February 2010. (i) C.-L. Sun, B.-J. Li, Z.-J. Shi, “Direct C-H Transformation via Iron Catalysis”, Chem. Rev., Vol. 111, Issue 3, pp. 1293-1314, March 2011. (j) D. Roy, S. Mom, D. Lucas, H. Cattey, J.-C. Hierso, H. Doucet, “Direct Arylation of Heteroaromatic Compounds with Congested, Functionalised Aryl Bromides at Low Palladium/ Triphosphane Catalyst Loading”, Chem. Eur. J., Vol. 17, Issue 23, pp. 6453-6461, May 2011. (k) A. E. Wendlandt, A. M. Suess, S.S. Stahl, “Copper-Catalyzed Aerobic Oxidative C-H Functionalizations: Trends and Mechanistic Insights”, Angew. Chem. Int. Ed., Vol. 50, Issue 47, pp. 11062-11087, November 2011. (l) F. Shibahara, T. Murai, “Direct C-H Arylation of Heteroarenes Catalyzed by Palladium/ Nitrogen-Based Ligand Complexes”, Asain J. Org. Chem., Vol. 2, Issue 8, pp. 624-636, August 2013. (m) A. Dewanji, S. Murarka, D. Curran, A. Studer, “Phenyl Hydrazine as Initiator for Direct Arene C-H Arylation via Base Promoted Homolytic Aromatic Substitution”, Org. Lett., Vol. 15, Issue 23, pp. 6102-6105, November 2013. (n) C.-J. Li, “Cross-Dehydrogenative Coupling (CDC): Exploring C-C Bond Formations beyond Functional Group Transformations”, Acc. Chem. Res., Vol. 42, Issue 2, pp. 335-344, February 2009. (o) Y. Mitamura, H. Yorimitsu, K. Oshima, A. Osuka, “Straightforward access to aryl-substituted tetrathiafulvalenes by palladium- catalysed direct C-H arylation and their photophysical and electrochemical properties”, Chem. Sci., Vol. 2, Issue 10, pp. 2017-2021, October 2011. (p) P. Hu, M. Zhang, X. Jie, W. Su, “Palladium-Catalyzed Decarboxylative C-H Bond Arylation of Thiophenes”, Angew. Chem. Int. Ed., Vol. 51, Issue 1, pp. 227-231, January 2012. (q) S. Fan, F. Chen, X. Zhang, “Direct Palladium-Catalyzed Intermolecular Allylation of Highly Electron-Deficient Polyfluoroarenes”, Angew. Chem. Int. Ed., Vol. 50, Issue 26, pp. 5918-5923, June 2011.
[11] S. Tamba, Y. Okubo, S. Tanaka, D. Monguchi, A. Mori, “Palladium- Catalyzed C-H Functionalization of Heteroarenes with Aryl Bromides and Chlorides”, J. Org. Chem., Vol. 75, Issue 20, pp. 6998-7001, September 2010.
[12] D.-T. D. Tang, K. D. Collins, F. Glorius, “Completely Regioselective Direct C-H Functionalization of Benzo[b]thiophenes Using a Simple Heterogeneous Catalyst”, J. Am. Chem. Soc., Vol. 135, Issue 20, pp. 7450-7453, May 2013
[13] (a) T. A. Dwight, N. R. Rue, R. Charyk, R. Josselyn, B. DeBoef, “C-C Bond Formation via Double C-H Functionalization:  Aerobic Oxidative Coupling as a Method for Synthesizing Heterocoupled Biaryls”, Org. Lett., Vol. 9, Issue 16, pp. 3137–3139, July 2007. (b) S. Potavathri, A. S. Dumas, T. A. Dwight, G. R. Naumiec, J. M. Hammann, B. DeBoef, “Oxidant- controlled regioselectivity in the oxidative arylation of N-acetylindoles”, Tetrahedron Lett., Vol. 49, Issue 25, pp. 4050-4053, June 2008.
[14] G. Brasche, J. García-Fortanet, S. L. Buchwald, “Twofold C-H Functionalization: Palladium-Catalyzed Ortho Arylation of Anilides”, Org. Lett., Vol. 10, Issue 11, pp. 2207-2210, May 2008.
[15] (a) D. J. Schipper, K. Fagnou, “Direct Arylation as a Synthetic Tool for the Synthesis of Thiophene-Based Organic Electronic Materials”, Chem. Mater., Vol. 23, Issue 6, pp. 1594-1600, February 2011. (b) Q. Guo, J. Dong, D. Wan, D. Wu, J. You, “Modular Establishment of a Diketopyrrolopyrrole- Based Polymer Library via Pd-Catalyzed Direct C-H (Hetero)arylation: a Highly Efficient Approach to Discover Low-Bandgap Polymers”, Macromol. Rapid Commun., Vol. 34, Issue 6, pp. 522-527, January 2013. (c) P. Berrouard, A. Najari, A. Pron, D. Gendron, P.-O. Morin, J.-R. Pouliot, J. Veilleux, M. Leclerc, “Synthesis of 5-Alkyl[3,4-c]thienopyrrole-4,6-dione-Based Polymers by Direct Heteroarylation”, Angew. Chem. Int. Ed., Vol. 51, Issue 9, pp. 2068-2071, February 2012. (d) Q. Wang, M. Wakioka, F. Ozawa, “Synthesis of End-capped Regioregular Poly(3-hexylthiophene)s via Direct Arylation”, Macromol. Rapid Commun., Vol. 33, Issue 14, pp. 1203-1207, July 2012. (e) J. Wencel-Delord, F. Glorius, “C-H bond activation enables the rapid construction and late-stage diversification of functional molecules”, Nat. Chem., Vol. 5, Issue 5, pp. 369-375, April 2013. (f) W. Lu, J. Kuwabara, T. Iijima, H. Higashimura, H. Hayashi, T. Kanbara, “Synthesis of π-Conjugated Polymers Containing Fluorinated Arylene Units via Direct Arylation: Efficient Synthetic Method of Materials for OLEDs”, Macromolecules, Vol. 45, Issue 10, pp. 4128-4133, May 2012. (g) L. G. Mercier, M. Leclerc, “Direct (Hetero) Arylation: A New Tool for Polymer Chemists”, Acc. Chem. Res., Vol. 46, Issue 7, pp. 1597-1605, April 2013. (h) C.-Y. Liu, H. Zhao, H.-h. Yu, “Efficient Synthesis of 3,4- Ethylenedioxythiophene (EDOT)-Based Functional π-Conjugated Molecules through Direct C-H Bond Arylations”, Org. Lett., Vol. 13, Issue 15, pp. 4068-4071, July 2011. (i) H. Zhao, C.-Y. Liu, S.-C. Luo, B. Zhu, T.-H. Wang, H.-F. Hsu, H.-H. Yu, “Facile Syntheses of Dioxythiophene-Based Conjugated Polymers by Direct C-H Arylation”, Macromolecules, Vol. 45, Issue 19, pp. 7783-7790, September 2012. (j) S.-Y. Liu, M.-M. Shi, J.-C. Huang, Z.-N. Jin, X.-L. Hu, J.-Y. Pan, H.-Y. Li, A. K.-Y. Jen, H.-Z. Chen, “C-H activation: making diketopyrrolopyrrole derivatives easily accessible”, J. Mater. Chem. A, Vol. 1, Issue 8, pp. 2795-2805, February 2013. (k) D. J. Burke, D. J. Lipomi, “Green chemistry for organic solar cells”, Energy Environ. Sci., Vol. 6, Issue 7, pp. 2053-2066, July 2013.
[16] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature, Vol. 347, Issue 6293, pp. 539-541, October 1990
[17] Y. Lin, P. Cheng, Y. Liu, X. Zhao, D. Li, J. Tan, W. Hu, Y. Li, X. Zhan, “Solution-processable small molecules based on thieno[3,4-c]pyrrole-4,6- dione for high-performance solar cells”, Sol. Energ. Mat. Sol., Vol. 99, pp. 301-307, April 2012.
[18] A.Najari, P. Berrouard, C. Ottone, M. Boivin, Y. Zou, D. Gendron, W.-O. Caron, P. Legros, C. N. Allen, S. Sadki, M. Leclerc, “High Open-Circuit Voltage Solar Cells Based on New Thieno[3,4-c]pyrrole-4,6- dione and 2,7-Carbazole Copolymers”, Macromolecules, Vol. 45, Issue 4, pp. 1833-1838, February 2012.
[19] J. Jo, A. Pron, P. Berrouard, W. L. Leong, J. D. Yuen, J. S. Moon, M. Leclerc, A. J. Heeger, “A New Terthiophene-Thienopyrrolodione Copolymer- Based Bulk Heterojunction Solar Cell with High Open-Circuit Voltage”, Adv. Energy Mater., Vol. 2, Issue 11, pp. 1397-1403, November 2012.
[20] (a) Q. Feng, W. Zhang, G. Zhou, Z.-S. Wang, “Enhanced Performance of Quasi-Solid-State Dye-Sensitized Solar Cells by Branching the Linear Substituent in Sensitizers Based on Thieno[3,4-c]pyrrole-4,6-dione”, Chem. Asain J., Vol. 8, Issue 1, pp. 168-177, January 2013. (b) Y. Zou, A. Najari, P. Berrouard, S. Beaupré, B. R. Aïch, Y. Tao, M. Leclerc, “A Thieno [3,4-c]pyrrole-4,6-dione-Based Copolymer for Efficient Solar Cells”, J. Am. Chem. Soc., Vol. 132, Issue 15, pp. 5330-5331, April 2010. (c) Q. Wu, M. Wang, X. Qiao, Y. Xiong, Y. Huang, X. Gao, H. Li, “Thieno [3,4-c] pyrrole-4,6-dione Containing Copolymers for High Performance Field-Effect Transistors”, Macromolecules, Vol. 46, Issue 10, pp. 3887-3894, May 2013. (d) P. Berrouard, S. Dufresne, A. Pron, J. Veilleux, M. Leclerc, “Low-Cost Synthesis and Physical Characterization of Thieno[3,4-c]pyrrole-4,6- dione-Based Polymers”, J. Org. Chem., Vol. 77, Issue 18, pp. 8167-8173, September 2012.
[21] (a) A. Klapars, J. C. Antilla, X. Huang, S. L. Buchwald, “A General and Efficient Copper Catalyst for the Amidation of Aryl Halides and the N-Arylation of Nitrogen Heterocycles”, J. Am. Chem. Soc., Vol. 123, Issue 31, pp. 7727-7729, May 2001. (b) G. D. Allred, L. S. Liebeskind, “Copper-Mediated Cross-Coupling of Organostannanes with Organic Iodides at or below Room Temperature”, J. Am. Chem. Soc., Vol. 118, Issue 11, pp. 2748-2749, March 1996. (c) M. B. Thathagar, J. Beckers, G. Rothenberg, “Copper-Catalyzed Suzuki Cross-Coupling Using Mixed Nanocluster Catalysts”, J. Am. Chem. Soc., Vol. 124, Issue 40, pp. 11858-11859, October 2002. (d) D. Ma, F. Liu, “CuI-catalyzed coupling reaction of aryl halides with terminal alkynes in the absence of palladium and phosphine”, Chem. Commun., Issue 17, pp. 1934-1935, 2004.
[22] H.-Q. Do, O. Daugulis, “Copper-Catalyzed Arylation of Heterocycle C-H Bonds”, J. Am. Chem. Soc., Vol. 129, Issue 41, pp. 12404-12405, October 2007.
[23] H.-Q. Do, O. Daugulis, “A General Method for Copper-Catalyzed Arene Cross-Dimerization”, J. Am. Chem. Soc., Vol. 133, Issue 34, pp. 13577-13586, August 2011.
[24] F. Ullmann, J. Bielecki, “Ueber Synthesen in der Biphenylreihe”, Chem. Ber., Vol. 34, Issue 2, pp. 2174-2185, August 1901.
[25] X. Qin, B. Feng, J. Dong, X. Li, Y. Xue, Y. J. Lan, J. You, “Copper(II)- Catalyzed Dehydrogenative Cross-Coupling between Two Azoles”, J. Org. Chem., Vol. 77, Issue 17, pp. 7677-7683, September 2012.
[26] S. Fan, Z. Chen, X. Zhang, “Copper-Catalyzed Dehydrogenative Cross- Coupling of Benzothiazoles with Thiazoles and Polyfluoroarene”, Org. Lett., Vol. 14, Issue 18, pp. 4950-4953, September 2012.
[27] K. Tanaka, T. Kumagai, H. Aoki, M. Deguchi, S. Iwata, “Application of 2-(3,5,6-Trifluoro-2-hydroxy-4-methoxyphenyl) benzoxazole and - benzothiazole to Fluorescent Probes Sensing pH and Metal Cations”, J. Org. Chem., Vol. 66, Issue 22, pp. 7328-7333, November 2001.
[28] (a) H. Amii, K. Uneyama, “C-F Bond Activation in Organic Synthesis”, Chem. Rev., Vol. 109, Issue 5, pp. 2119-2183, May 2009. (b) E. A. Meyer, R. K. Castellano, F. Diederich, “Interactions with Aromatic Rings in Chemical and Biological Recognition”, Angew. Chem. Int. Ed., Vol. 42, Issue 11, pp. 1210-1250, March 2003. (c) A. R. Murphy, J. M. J. Frechet, “Organic Semiconducting Oligomers for Use in Thin Film Transistors”, Chem. Rev., Vol. 107, Issue 4, pp. 1066-1096, April 2007. (d) F. Babudri, G. M. Farinola, F. Naso, R. Ragni, “Fluorinated organic materials for electronic and optoelectronic applications: the role of the fluorine atom”, Chem. Commun., Issue 10, pp. 1003-1022, 2007.
[29] G. Huang, H. Sun, X. Qiu, C. Jin, C. Lin, Y. Shen, J. Jiang, L. Wang, “Ligand-Free Copper-Catalyzed Regioselective C-2 Arylation of Imidazo [2,1-b] thiazoles”, Org. Lett., Vol. 13, Issue 19, pp. 5224-5227, October 2011.
[30] (a) T. H. Al-Tel, R. A. Al-Qawasmeh, W. Voelter, “Rapid Assembly of Polyfunctional Structures Using a One-Pot Five- and Six-Component Sequential Groebke–Blackburn/Ugi/Passerini Process”, Eur. J. Org. Chem., Vol. 2010, Issue 29, pp. 5586-5593, October 2010. (b) S. D. Fidanze, S. A. Erickson, G. T. Wang, R. Mantei, R. F. Clark, B. K. Sorensen, N. Y. Bamaung, P. Kovar, E. F. Johnson, K. K. Swinger, K. D. Stewart, Q. Zhang, L. A. Tucker, W. N. Pappano, J. L. Wilsbacher, J. Y. Wang, G. S. Sheppard, R. L. Bell, S. K. Davidsen, R. D. Hubbard, “Imidazo[2,1-b]thiazoles: Multitargeted inhibitors of both the insulin-like growth factor receptor and members of the epidermal growth factor family of receptor tyrosine kinases”, Bioorg. Med. Chem. Lett., Vol. 20, Issue 8, pp. 2452-2455, April 2010. (c) H. Xu, Y. Zhang, J. Q. Huang, W. Z. Chen, “Copper-Catalyzed Synthesis of N-Fused Heterocycles through Regioselective 1,2-Aminothiolation of 1,1-Dibromoalkenes”, Org. Lett., Vol. 12, Issue 16, pp. 3704-3707, August 2010. (d) S. K. Guchhait, C. Madaan, B. S. Thakkar, “A Highly Flexible and Efficient Ugi-Type Multicomponent Synthesis of Versatile N-Fused Aminoimidazoles”, Synthesis, Vol. 2009, Issue 19, pp. 3293-3300, 2009.
[31] Z. Xie, X. Zhu, Y. Guan, D. Zhu, H. Hu, C. Lin, Y. Pan, J. Jiang, L. Wang, “Cu-catalyzed direct C-H bond functionalization: a regioselective protocol to 5-aryl thiazolo[3,2-b]-1,2,4-triazoles”, Org. Biomol. Chem., Vol. 11, Issue 8, pp. 1390-1398, February 2013.
[32] (a) B. S. Holla, K. N. Poojary, B. Kalluraya, P. V. Gowda, “Synthesis, characterization and antifungal activity of some N-bridged heterocycles derived from 3-(3-bromo-4-methoxyphenyl)-4-amino-5-mercapto-1,2,4- triazole”, Farmaco, Vol. 51, Issue 12, pp. 793-799, December 1996. (b) R. Lesyk, O. Vladzimirska, S. Holota, L. Zaprutko, A. Gzella, “New 5-substituted thiazolo[3,2-b][1,2,4]triazol-6-ones: Synthesis and anticancer evaluation”, Eur. J. Med. Chem., Vol. 42, Issue 5, pp. 641-648, May 2007. (c) S. Demirayak, G. Zitouni, P. Chevallet, K. Erol, F. S. Kilic, “Synthesis and vasodilatory activity of some thiazolo-triazole derivative”, Farmaco, Vol. 48, Issue 5, pp. 707-712, May 1993.
[33] Y. Han, X. Wang, X. Wang, L. Lv, G. Diao, Y. Yuan, “Ligand-Free Copper Powder Catalyzed Direct Coupling Reaction of Heterocyclic C-H Bonds and Aryl Halides”, Synthesis, Vol. 44, Issue 19, pp. 3027-3032, October 2012.
[34] D. Zhao, W. Wang, F. Yang, J. Lan, L. Yang, G. Gao, J. You, “Copper-Catalyzed Direct C Arylation of Heterocycles with Aryl Bromides: Discovery of Fluorescent Core Frameworks”, Angew. Chem. Int. Ed., Vol. 48, Issue 18, pp. 3296-3300, April 2009.
[35] H.-Q. Do, R. M. K. Khan, O. Daugulis, “A General Method for Copper- Catalyzed Arylation of Arene C-H Bonds”, J. Am. Chem. Soc., Vol. 130, Issue 45, pp. 15185-15192, November 2008.
[36] (a) L. Ackermann, R. Vicente, R. Born, “Palladium-Catalyzed Direct Arylations of 1,2,3-Triazoles with Aryl Chlorides using Conventional Heating”, Adv. Synth. Catal., Vol. 350, Issue 5, pp. 741-748, March 2008. (b) L. Ackermann, J. H. Spatz, C. J. Gschrei, R. Born, A. Althammer, “A Diaminochlorophosphine for Palladium-Catalyzed Arylations of Amines and Ketones”, Angew. Chem. Int. Ed., Vol. 45, Issue 45, pp. 7627-7630, November 2006. (c) L. Ackermann, R. Born, J. H. Spatz, D. Meyer, “Efficient Aryl-(Hetero)Aryl Coupling by Activation of C-Cl and C-F Bonds Using Nickel Complexes of Air-Stable Phosphine Oxides”, Angew. Chem. Int. Ed., Vol. 44, Issue 44, pp. 7216-7219, November 2005. (d) M. Ohashi, R. Doi, S. Ogoshi, “Palladium-Catalyzed Coupling Reaction of Perfluoroarenes with Diarylzinc Compounds”, Chem. Eur. J., Vol. 20, Issue 7, pp. 2040-2048, February 2014.
[37] C.-Y. Liu, P. Knochel, “Preparation of Polyfunctional Arylmagnesium Reagents Bearing a Triazene Moiety. A New Carbazole Synthesis”, Org. Lett., Vol. 7, Issue 13, pp. 2543-254, June 2005 and references cited therein.
[38] (a) A. Najari, S. Beaupré, P. Berrouard, Y. Zou, J.-R. Pouliot, C. Lepage-Pérusse, M. Leclerc, “Synthesis and Characterization of New Thieno[3,4-c]pyrrole-4,6-dione Derivatives for Photovoltaic Applications”, Adv. Funct. Mater., Vol. 21, Issue 4, pp. 718-728, February 2011. (b) S. Beaupré, A. Pron, S. H. Drouin, A. Najari, L. G. Mercier, A. Robitaille, M. Leclerc, “Thieno-, Furo-, and Selenopheno[3,4-c]pyrrole-4,6-dione Copolymers : Effect of the Heteroatom on the Electrooptical Properties”, Macromolecules, Vol. 45, Issue 17, pp. 6906-6914, September 2012.
[39] C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge, J. M. J. Fréchet, “Synthetic Control of Structural Order in N-Alkylthieno[3,4-c] pyrrole- 4,6-dione-Based Polymers for Efficient Solar Cells”, J. Am. Chem. Soc., Vol. 132, Issue 22, pp. 7595-7597, June 2010.
[40] (a) K. Müller, C. Faeh, F. Diederich, “Fluorine in Pharmaceuticals: Looking Beyond Intuition”, Science, Vol. 317, Issue 5846, pp. 1881-1886, September 2007. (b) S. Purser, P. R. Moore, S. Swallowb, V. Gouverneur, “Fluorine in medicinal chemistry”, Chem. Soc. Rev., Vol. 37, Issue 2, pp. 320-330, 2008. (c) D. O’Hagan, “Understanding organofluorine chemistry. An introduction to the C-F bond”, Chem. Soc. Rev., Vol. 37, Issue 2, pp. 308-319, 2008. (d) Q. A. Huchet, B. Kuhn, B. Wagner, H. Fischer, M. Kansy, D. Zimmerli, E. M. Carreira, K. Müller, “On the polarity of partially fluorinated methyl groups”, J. Fluorine Chem., Vol. 152, pp. 119-128, August 2013.
[41] (a) G. Landelle, A. Panossian, S. Pazenok, J.-P. Vors, F. R. Leroux, “Recent advances in transition metal-catalyzed C sp2-monofluoro-, difluoro-, perfluoromethylation and trifluoromethylthiolation”, Beilstein J. Org. Chem., Vol. 9, pp. 2476-2536, November 2013. (b) J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, “Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade”, Chem. Rev., Vol. 114, Issue 4, pp. 2432-2506, February 2014. (c) N. A. Meanwell, “Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design”, J. Med. Chem., Vol. 54, Issue 8, pp. 2529-2591, April 2011. (d) M. O. Anderson, J. Zhang, Y. Liu, C. Yao, P.-W. Phuan, A. S. Verkman, “Nanomolar Potency and Metabolically Stable Inhibitors of Kidney Urea Transporter UT-B”, J. Med. Chem., Vol. 55, Issue 12, pp. 5942-5950, June 2012.
[42] T. Kakinuma, H. Kojima, M. Ashizawa, H. Matsumoto, T. Mori, “Correlation of mobility and molecular packing in organic transistors based on cycloalkyl naphthalene diimides”, J. Mater. Chem. C, Vol. 1, Issue 34, pp. 5395-5401, September 2013.
[43] W. C. Still, M. Khan, A. Mitra, “Rapid chromatographic technique for preparative separations with moderate resolution”, J. Org. Chem., Vol. 43, Issue 14, pp. 2923-2925, July 1978.
[44] (a) C. B. Nielsen, T. Bjørnholm, “New Regiosymmetrical Dioxopyrrolo- and Dihydropyrrolo-Functionalized Polythiophenes”, Org. Lett., Vol. 6, Issue 19, pp. 3381-3384, September 2004. (b) M. Pomerantz, A. S. Amarasekara, “Studies of planar poly(3,4-disubstituted-thiophenes)”, Synth. Met., Vol. 135-136, pp. 257-258, April 2003.
[45] C.-Y. Liu, P. Knochel, “Preparation of Polyfunctional Arylmagnesium Reagents Bearing a Triazene Moiety. A New Carbazole Synthesis”, Org. Lett., Vol. 7, Issue 13, pp. 2543-254, June 2005.
指導教授 劉青原(Ching-Yuan Liu) 審核日期 2014-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明